Home
Class 12
MATHS
[[overline(a)+overline(b), overline(b)+o...

`[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=`

A

`0`

B

`2[[overline(a), overline(b), overline(c)]]`

C

`[[overline(a), overline(b), overline(c)]]`

D

`-[[overline(a), overline(b), overline(c)]]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

If overline(a), overline(b), overline(c) are linearly independent, the ([[2overline(a)+overline(b), 2overline(b)+overline(c), 2overline(c)+overline(a)]])/([[overline(a), overline(b), overline(c)]])=

If overline(a), overline(b) and overline(c) are unit coplanar vectors, then [[2overline(a)-overline(b), 2overline(b)-overline(c), 2overline(c)-overline(a)]]=

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

If four points A(overline(a)), B(overline(b)), C(overline(c)) and D(overline(d)) are coplanar, then [[overline(a), overline(b), overline(d)]]+[[overline(b), overline(c), overline(d)]]+[[overline(c), overline(a), overline(d)]]=

If [[overline(a), overline(b), overline(c)]]=4 then the volume of the paralleloP1ped with overline(a)+overline(b), overline(b)+overline(c) and overline(c)+overline(a) as co-terminous edges is

If [[overline(a), overline(b), overline(c)]]=2 then the volume of the paralleloP1ped whose co-terminous edges are 2overline(a)+overline(b), 2overline(b)+overline(c) and 2overline(c)+overline(a)

If overline(a), overline(b) and overline(c) are three non-coplanar vectors, then [[overline(a)+overline(b)+overline(c), overline(a)-overline(c), overline(a)-overline(b)]]=

|[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*overline(b), overline(b)*overline(b)]|=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(a), overline(b) and overline(c) are unit coplanar vectors,...

    Text Solution

    |

  2. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  3. [[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overli...

    Text Solution

    |

  4. [[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overli...

    Text Solution

    |

  5. overline(a)*((overline(a)+overline(b)+overline(c))times(overline(b)+ov...

    Text Solution

    |

  6. Value of ((overline(a)+overline(b)+overline(c))times(overline(b)-overl...

    Text Solution

    |

  7. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  8. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  9. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  10. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  11. If overline(a), overline(b) and overline(c) are three coplanar vectors...

    Text Solution

    |

  12. If overline(u), overline(v), overline(w) are three non-coplanar vector...

    Text Solution

    |

  13. If four points A(overline(a)), B(overline(b)), C(overline(c)) and D(ov...

    Text Solution

    |

  14. For vectors overline(a) and overline(b) and overline(a)+overline(b)ne=...

    Text Solution

    |

  15. If overline(a), overline(b), overline(c) are non-coplanar and m, n are...

    Text Solution

    |

  16. The number of distinct real values of lambda, for which the vectors -l...

    Text Solution

    |

  17. If [[overline(a), overline(b), overline(c)]]=12, then [[overline(a)+ov...

    Text Solution

    |

  18. If [[2overline(a)+overline(b), overline(c), overline(d)]]=lambda[[over...

    Text Solution

    |

  19. If [[3overline(a)+5overline(b), overline(c), overline(d)]]=p[[overline...

    Text Solution

    |

  20. If overline(a), overline(b) and overline(c) are non-coplanar and (over...

    Text Solution

    |