Home
Class 12
MATHS
[[overline(a), overline(b)+overline(c), ...

`[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=`

A

`[[overline(a), overline(b), overline(c)]]`

B

`-[[overline(a), overline(b), overline(c)]]`

C

`0`

D

`2[[overline(a), overline(b), overline(c)]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem involving the scalar triple product of vectors, we will denote the vectors as follows: Let: - \(\overline{a} = \mathbf{A}\) - \(\overline{b} = \mathbf{B}\) - \(\overline{c} = \mathbf{C}\) We need to evaluate the scalar triple product: \[ \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) \cdot (\mathbf{C} + \mathbf{B} + \mathbf{A}) \] This can be expressed as the determinant of a matrix formed by these vectors: \[ \begin{vmatrix} \mathbf{A} & \mathbf{B} + \mathbf{C} & \mathbf{C} + \mathbf{B} + \mathbf{A} \end{vmatrix} \] ### Step 1: Write the determinant We can write the determinant as: \[ \begin{vmatrix} \mathbf{A} & \mathbf{B} + \mathbf{C} & \mathbf{C} + \mathbf{B} + \mathbf{A} \end{vmatrix} \] ### Step 2: Apply column operations We can simplify the determinant using column operations. Specifically, we can subtract the first column from the third column: \[ \mathbf{C} + \mathbf{B} + \mathbf{A} - \mathbf{A} = \mathbf{B} + \mathbf{C} \] Thus, the determinant becomes: \[ \begin{vmatrix} \mathbf{A} & \mathbf{B} + \mathbf{C} & \mathbf{B} + \mathbf{C} \end{vmatrix} \] ### Step 3: Recognize the result Now, we can see that the third column is identical to the second column. When two columns of a determinant are the same, the value of the determinant is zero: \[ \begin{vmatrix} \mathbf{A} & \mathbf{B} + \mathbf{C} & \mathbf{B} + \mathbf{C} \end{vmatrix} = 0 \] ### Conclusion Thus, the scalar triple product evaluates to zero: \[ \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) \cdot (\mathbf{C} + \mathbf{B} + \mathbf{A}) = 0 \] ### Final Answer The correct option is **zero**. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]=

[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

If [[overline(a), overline(b), overline(c)]]=12 , then [[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

If overline(a), overline(b), overline(c) are linearly independent, the ([[2overline(a)+overline(b), 2overline(b)+overline(c), 2overline(c)+overline(a)]])/([[overline(a), overline(b), overline(c)]])=

The value of [[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]] where |overline(a)|=1, |overline(b)|=2 and |overline(c)|=3 is

If overline(a), overline(b) and overline(c) are unit coplanar vectors, then [[2overline(a)-overline(b), 2overline(b)-overline(c), 2overline(c)-overline(a)]]=

If overline(a), overline(b) and overline(c) are three non-coplanar vectors, then [[overline(a)+overline(b)+overline(c), overline(a)-overline(c), overline(a)-overline(b)]]=

[[overline(a), overline(b), overline(c)]] is the scalar triple product of three vectors overline(a), overline(b), overline(c) then [[overline(a), overline(b), overline(c)]]=

The volume of paralleloP1ped with vector overline(a)+2overline(b)+overline(c), overline(a)-overline(b) and overline(a)-overline(b)-overline(c) is equal to k[[overline(a), overline(b), overline(c)]] . Then k=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  2. [[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overli...

    Text Solution

    |

  3. [[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overli...

    Text Solution

    |

  4. overline(a)*((overline(a)+overline(b)+overline(c))times(overline(b)+ov...

    Text Solution

    |

  5. Value of ((overline(a)+overline(b)+overline(c))times(overline(b)-overl...

    Text Solution

    |

  6. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  7. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  8. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  9. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  10. If overline(a), overline(b) and overline(c) are three coplanar vectors...

    Text Solution

    |

  11. If overline(u), overline(v), overline(w) are three non-coplanar vector...

    Text Solution

    |

  12. If four points A(overline(a)), B(overline(b)), C(overline(c)) and D(ov...

    Text Solution

    |

  13. For vectors overline(a) and overline(b) and overline(a)+overline(b)ne=...

    Text Solution

    |

  14. If overline(a), overline(b), overline(c) are non-coplanar and m, n are...

    Text Solution

    |

  15. The number of distinct real values of lambda, for which the vectors -l...

    Text Solution

    |

  16. If [[overline(a), overline(b), overline(c)]]=12, then [[overline(a)+ov...

    Text Solution

    |

  17. If [[2overline(a)+overline(b), overline(c), overline(d)]]=lambda[[over...

    Text Solution

    |

  18. If [[3overline(a)+5overline(b), overline(c), overline(d)]]=p[[overline...

    Text Solution

    |

  19. If overline(a), overline(b) and overline(c) are non-coplanar and (over...

    Text Solution

    |

  20. If overline(a), overline(b) and overline(c) are unit vectors perpendic...

    Text Solution

    |