Home
Class 12
MATHS
If four points A(overline(a)), B(overlin...

If four points `A(overline(a)), B(overline(b)), C(overline(c)) and D(overline(d))` are coplanar, then `[[overline(a), overline(b), overline(d)]]+[[overline(b), overline(c), overline(d)]]+[[overline(c), overline(a), overline(d)]]=`

A

`[[overline(a), overline(c), overline(d)]]`

B

`[[overline(a), overline(b), overline(c)]]`

C

`[[overline(c), overline(b), overline(d)]]`

D

`[[overline(d), overline(b), overline(c)]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if four points \( A \), \( B \), \( C \), and \( D \) are coplanar, then the sum of the scalar triple products \( [[\overline{a}, \overline{b}, \overline{d}]] + [[\overline{b}, \overline{c}, \overline{d}]] + [[\overline{c}, \overline{a}, \overline{d}]] = 0 \). ### Step-by-Step Solution: 1. **Understanding Coplanarity**: Since the points \( A \), \( B \), \( C \), and \( D \) are coplanar, it means that they lie in the same plane. For vectors, this implies that the scalar triple product of any three vectors formed by these points will be zero. 2. **Scalar Triple Product**: The scalar triple product \( [[\overline{u}, \overline{v}, \overline{w}]] \) can be calculated using the formula: \[ [[\overline{u}, \overline{v}, \overline{w}]] = \overline{u} \cdot (\overline{v} \times \overline{w}) \] This represents the volume of the parallelepiped formed by the vectors \( \overline{u} \), \( \overline{v} \), and \( \overline{w} \). If the volume is zero, it indicates that the vectors are coplanar. 3. **Calculating Each Term**: - For the first term \( [[\overline{a}, \overline{b}, \overline{d}]] \): \[ [[\overline{a}, \overline{b}, \overline{d}]] = \overline{a} \cdot (\overline{b} \times \overline{d}) = 0 \] because \( A, B, D \) are coplanar. - For the second term \( [[\overline{b}, \overline{c}, \overline{d}]] \): \[ [[\overline{b}, \overline{c}, \overline{d}]] = \overline{b} \cdot (\overline{c} \times \overline{d}) = 0 \] because \( B, C, D \) are coplanar. - For the third term \( [[\overline{c}, \overline{a}, \overline{d}]] \): \[ [[\overline{c}, \overline{a}, \overline{d}]] = \overline{c} \cdot (\overline{a} \times \overline{d}) = 0 \] because \( C, A, D \) are coplanar. 4. **Summing the Terms**: Now we sum all three scalar triple products: \[ [[\overline{a}, \overline{b}, \overline{d}]] + [[\overline{b}, \overline{c}, \overline{d}]] + [[\overline{c}, \overline{a}, \overline{d}]] = 0 + 0 + 0 = 0 \] 5. **Conclusion**: Therefore, we conclude that: \[ [[\overline{a}, \overline{b}, \overline{d}]] + [[\overline{b}, \overline{c}, \overline{d}]] + [[\overline{c}, \overline{a}, \overline{d}]] = 0 \] ### Final Answer: The answer is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]=

[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

If [[overline(a), overline(b), overline(c)]]=12 , then [[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

If overline(a), overline(b) and overline(c) are unit coplanar vectors, then [[2overline(a)-overline(b), 2overline(b)-overline(c), 2overline(c)-overline(a)]]=

If overline(a) and overline(b) are parallel vectors [[overline(a), overline(b), overline(c)]] =

[[overline(a), overline(b), overline(a)timesoverline(b)]]=

If overline(a), overline(b) and overline(c) are three non-coplanar vectors, then [[overline(a)+overline(b)+overline(c), overline(a)-overline(c), overline(a)-overline(b)]]=

If overline(a), overline(b), overline(c) are linearly independent, the ([[2overline(a)+overline(b), 2overline(b)+overline(c), 2overline(c)+overline(a)]])/([[overline(a), overline(b), overline(c)]])=

If [[3overline(a)+5overline(b), overline(c), overline(d)]]=p[[overline(a), overline(c), overline(d)]]+q[[overline(b), overline(c), overline(d)]] , then p+q=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(a), overline(b) and overline(c) are three coplanar vectors...

    Text Solution

    |

  2. If overline(u), overline(v), overline(w) are three non-coplanar vector...

    Text Solution

    |

  3. If four points A(overline(a)), B(overline(b)), C(overline(c)) and D(ov...

    Text Solution

    |

  4. For vectors overline(a) and overline(b) and overline(a)+overline(b)ne=...

    Text Solution

    |

  5. If overline(a), overline(b), overline(c) are non-coplanar and m, n are...

    Text Solution

    |

  6. The number of distinct real values of lambda, for which the vectors -l...

    Text Solution

    |

  7. If [[overline(a), overline(b), overline(c)]]=12, then [[overline(a)+ov...

    Text Solution

    |

  8. If [[2overline(a)+overline(b), overline(c), overline(d)]]=lambda[[over...

    Text Solution

    |

  9. If [[3overline(a)+5overline(b), overline(c), overline(d)]]=p[[overline...

    Text Solution

    |

  10. If overline(a), overline(b) and overline(c) are non-coplanar and (over...

    Text Solution

    |

  11. If overline(a), overline(b) and overline(c) are unit vectors perpendic...

    Text Solution

    |

  12. The value of [[overline(a)-overline(b), overline(b)-overline(c), overl...

    Text Solution

    |

  13. If |overline(a)|=5, |overline(b)|=3, |overline(c)|=4 and |overline(a)|...

    Text Solution

    |

  14. If overline(a) is perpendicular to overline(b) and overline(c), |overl...

    Text Solution

    |

  15. If |overline(c)|=1 and overline(c) is perpedicular to overline(a) and ...

    Text Solution

    |

  16. If overline(a)=hat(i)-hat(j), overline(b)=hat(j)-hat(k), overline(c)=h...

    Text Solution

    |

  17. If overline(b)=2hat(i)+hat(j)-hat(k), overline(c)=hat(i)+3hat(k) and o...

    Text Solution

    |

  18. If overline(a), overline(b), overline(c) are linearly independent, the...

    Text Solution

    |

  19. If overline(A),overline(B), overline(C) are three non-coplanar vector,...

    Text Solution

    |

  20. If overline(a), overline(b), overline(c) are non-coplanar vectors and ...

    Text Solution

    |