Home
Class 12
MATHS
The value of [[overline(a)-overline(b), ...

The value of `[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]` where` |overline(a)|=1, |overline(b)|=2 and |overline(c)|=3` is

A

`1`

B

`6`

C

`0`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the scalar triple product given by: \[ [[\overline{a} - \overline{b}, \overline{b} - \overline{c}, \overline{c} - \overline{a}]] \] where \(|\overline{a}| = 1\), \(|\overline{b}| = 2\), and \(|\overline{c}| = 3\). ### Step 1: Rewrite the vectors We can denote: - \(\overline{a} = \mathbf{a}\) - \(\overline{b} = 2\mathbf{b}\) - \(\overline{c} = 3\mathbf{c}\) Thus, we need to evaluate: \[ [[\mathbf{a} - 2\mathbf{b}, 2\mathbf{b} - 3\mathbf{c}, 3\mathbf{c} - \mathbf{a}]] \] ### Step 2: Simplify the vectors Now, we can simplify the vectors in the triple product: 1. The first vector is \(\mathbf{a} - 2\mathbf{b}\). 2. The second vector is \(2\mathbf{b} - 3\mathbf{c}\). 3. The third vector is \(3\mathbf{c} - \mathbf{a}\). ### Step 3: Apply the property of scalar triple product Using the property of scalar triple product, we can perform column operations. We can add or subtract columns without changing the value of the scalar triple product. Let's perform the following operation: - Replace the first column with \((\mathbf{a} - 2\mathbf{b}) + (3\mathbf{c} - \mathbf{a})\). This results in: \[ (\mathbf{a} - 2\mathbf{b} + 3\mathbf{c} - \mathbf{a}) = (3\mathbf{c} - 2\mathbf{b}) \] Now, the matrix becomes: \[ [[3\mathbf{c} - 2\mathbf{b}, 2\mathbf{b} - 3\mathbf{c}, 3\mathbf{c} - \mathbf{a}]] \] ### Step 4: Observe the cancellation Now, if we look closely at the columns, we can see that: 1. The first column is \(3\mathbf{c} - 2\mathbf{b}\). 2. The second column is \(2\mathbf{b} - 3\mathbf{c}\). 3. The third column is \(3\mathbf{c} - \mathbf{a}\). Notice that if we add the first two columns, we have: \[ (3\mathbf{c} - 2\mathbf{b}) + (2\mathbf{b} - 3\mathbf{c}) = 0 \] ### Step 5: Conclusion Since one of the columns becomes zero, the scalar triple product is zero: \[ [[\overline{a} - \overline{b}, \overline{b} - \overline{c}, \overline{c} - \overline{a}]] = 0 \] Thus, the final answer is: \[ \text{The value is } 0. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

[[overline(a), overline(b), overline(a)timesoverline(b)]]=

If overline(a), overline(b), overline(c) are linearly independent, the ([[2overline(a)+overline(b), 2overline(b)+overline(c), 2overline(c)+overline(a)]])/([[overline(a), overline(b), overline(c)]])=

|[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*overline(b), overline(b)*overline(b)]|=

overline(a)*((overline(a)+overline(b)+overline(c))times(overline(b)+overline(c)))=

overline(AB)-overline(CB)+overline(DA)+2overline(CD)=

Value of ((overline(a)+overline(b)+overline(c))times(overline(b)-overline(a)))*overline(c) is

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(a), overline(b) and overline(c) are non-coplanar and (over...

    Text Solution

    |

  2. If overline(a), overline(b) and overline(c) are unit vectors perpendic...

    Text Solution

    |

  3. The value of [[overline(a)-overline(b), overline(b)-overline(c), overl...

    Text Solution

    |

  4. If |overline(a)|=5, |overline(b)|=3, |overline(c)|=4 and |overline(a)|...

    Text Solution

    |

  5. If overline(a) is perpendicular to overline(b) and overline(c), |overl...

    Text Solution

    |

  6. If |overline(c)|=1 and overline(c) is perpedicular to overline(a) and ...

    Text Solution

    |

  7. If overline(a)=hat(i)-hat(j), overline(b)=hat(j)-hat(k), overline(c)=h...

    Text Solution

    |

  8. If overline(b)=2hat(i)+hat(j)-hat(k), overline(c)=hat(i)+3hat(k) and o...

    Text Solution

    |

  9. If overline(a), overline(b), overline(c) are linearly independent, the...

    Text Solution

    |

  10. If overline(A),overline(B), overline(C) are three non-coplanar vector,...

    Text Solution

    |

  11. If overline(a), overline(b), overline(c) are non-coplanar vectors and ...

    Text Solution

    |

  12. If overline(a), overline(b), overline(c) are non-coplanar vectors and ...

    Text Solution

    |

  13. If overline(b) and overline(c) are any two perpendicular unit vectors ...

    Text Solution

    |

  14. If overline(a),overline(b), overline(c) are three non-coplanar vectors...

    Text Solution

    |

  15. If overline(a),overline(b), overline(c) are three non-coplanar vectors...

    Text Solution

    |

  16. If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(...

    Text Solution

    |

  17. If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(...

    Text Solution

    |

  18. If overline(a), overline(b), overline(c) are three non-coplanar vector...

    Text Solution

    |

  19. If z1 and z2 are z co-ordinates of the point of trisection of the segm...

    Text Solution

    |

  20. Let square PQRS be a quadrilateral. If M and N are the mid-points of t...

    Text Solution

    |