Home
Class 12
MATHS
If overline(a),overline(b), overline(c) ...

If `overline(a),overline(b), overline(c)` are three non-coplanar vectors and `overline(p), overline(q), overline(r)` are vectors defined by the relations `overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]])`, then `(overline(a)+overline(b))*overline(p)+(overline(b)+overline(c))*overline(q)+(overline(c)+overline(a))*overline(r)=`

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will use the definitions of the vectors \( \overline{p}, \overline{q}, \overline{r} \) and compute the expression \( (\overline{a} + \overline{b}) \cdot \overline{p} + (\overline{b} + \overline{c}) \cdot \overline{q} + (\overline{c} + \overline{a}) \cdot \overline{r} \). ### Step 1: Substitute the definitions of \( \overline{p}, \overline{q}, \overline{r} \) We know: \[ \overline{p} = \frac{\overline{b} \times \overline{c}}{[\overline{a}, \overline{b}, \overline{c}]}, \quad \overline{q} = \frac{\overline{c} \times \overline{a}}{[\overline{a}, \overline{b}, \overline{c}]}, \quad \overline{r} = \frac{\overline{a} \times \overline{b}}{[\overline{a}, \overline{b}, \overline{c}]} \] Substituting these into the expression: \[ (\overline{a} + \overline{b}) \cdot \overline{p} + (\overline{b} + \overline{c}) \cdot \overline{q} + (\overline{c} + \overline{a}) \cdot \overline{r} \] becomes: \[ (\overline{a} + \overline{b}) \cdot \left( \frac{\overline{b} \times \overline{c}}{[\overline{a}, \overline{b}, \overline{c}]} \right) + (\overline{b} + \overline{c}) \cdot \left( \frac{\overline{c} \times \overline{a}}{[\overline{a}, \overline{b}, \overline{c}]} \right) + (\overline{c} + \overline{a}) \cdot \left( \frac{\overline{a} \times \overline{b}}{[\overline{a}, \overline{b}, \overline{c}]} \right) \] ### Step 2: Factor out the common denominator The common denominator is \( [\overline{a}, \overline{b}, \overline{c}] \). Thus, we can factor it out: \[ \frac{1}{[\overline{a}, \overline{b}, \overline{c}]} \left[ (\overline{a} + \overline{b}) \cdot (\overline{b} \times \overline{c}) + (\overline{b} + \overline{c}) \cdot (\overline{c} \times \overline{a}) + (\overline{c} + \overline{a}) \cdot (\overline{a} \times \overline{b}) \right] \] ### Step 3: Expand each dot product Now we will expand each term inside the brackets: 1. \( (\overline{a} + \overline{b}) \cdot (\overline{b} \times \overline{c}) = \overline{a} \cdot (\overline{b} \times \overline{c}) + \overline{b} \cdot (\overline{b} \times \overline{c}) \) 2. \( (\overline{b} + \overline{c}) \cdot (\overline{c} \times \overline{a}) = \overline{b} \cdot (\overline{c} \times \overline{a}) + \overline{c} \cdot (\overline{c} \times \overline{a}) \) 3. \( (\overline{c} + \overline{a}) \cdot (\overline{a} \times \overline{b}) = \overline{c} \cdot (\overline{a} \times \overline{b}) + \overline{a} \cdot (\overline{a} \times \overline{b}) \) ### Step 4: Simplify using properties of the dot and cross products Using the property that the dot product of a vector with a cross product involving itself is zero: - \( \overline{b} \cdot (\overline{b} \times \overline{c}) = 0 \) - \( \overline{c} \cdot (\overline{c} \times \overline{a}) = 0 \) - \( \overline{a} \cdot (\overline{a} \times \overline{b}) = 0 \) Thus, we are left with: \[ \overline{a} \cdot (\overline{b} \times \overline{c}) + \overline{b} \cdot (\overline{c} \times \overline{a}) + \overline{c} \cdot (\overline{a} \times \overline{b}) \] ### Step 5: Recognize the expression as a triple product The expression \( \overline{a} \cdot (\overline{b} \times \overline{c}) + \overline{b} \cdot (\overline{c} \times \overline{a}) + \overline{c} \cdot (\overline{a} \times \overline{b}) \) is known to equal \( [\overline{a}, \overline{b}, \overline{c}] \). ### Step 6: Final result Thus, we have: \[ \frac{[\overline{a}, \overline{b}, \overline{c}]}{[\overline{a}, \overline{b}, \overline{c}]} = 1 \] So the final answer is: \[ 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , where overline(a), overline(b), overline(c) are three non-coplanar vectors, then (overline(a)+overline(b)+overline(c))*(overline(p)+overline(q)+overline(r))=

[[overline(a), overline(b), overline(a)timesoverline(b)]]=

If overline(a), overline(b), overline(c) are three non-coplanar vectors, then overline(a)*((overline(b)timesoverline(c))/(3[[overline(b), overline(c), overline(a)]]))-overline(b)*((overline(c)timesoverline(a))/(2[[overline(c), overline(a), overline(b)]]))=

If overline(c)=3overline(a)-2overline(b) , then [[overline(a), overline(b), overline(c)]]=

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]=

[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

|[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*overline(b), overline(b)*overline(b)]|=

If [[overline(a), overline(b), overline(c)]]=12 , then [[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(a), overline(b) and overline(c) are non-coplanar and (over...

    Text Solution

    |

  2. If overline(a), overline(b) and overline(c) are unit vectors perpendic...

    Text Solution

    |

  3. The value of [[overline(a)-overline(b), overline(b)-overline(c), overl...

    Text Solution

    |

  4. If |overline(a)|=5, |overline(b)|=3, |overline(c)|=4 and |overline(a)|...

    Text Solution

    |

  5. If overline(a) is perpendicular to overline(b) and overline(c), |overl...

    Text Solution

    |

  6. If |overline(c)|=1 and overline(c) is perpedicular to overline(a) and ...

    Text Solution

    |

  7. If overline(a)=hat(i)-hat(j), overline(b)=hat(j)-hat(k), overline(c)=h...

    Text Solution

    |

  8. If overline(b)=2hat(i)+hat(j)-hat(k), overline(c)=hat(i)+3hat(k) and o...

    Text Solution

    |

  9. If overline(a), overline(b), overline(c) are linearly independent, the...

    Text Solution

    |

  10. If overline(A),overline(B), overline(C) are three non-coplanar vector,...

    Text Solution

    |

  11. If overline(a), overline(b), overline(c) are non-coplanar vectors and ...

    Text Solution

    |

  12. If overline(a), overline(b), overline(c) are non-coplanar vectors and ...

    Text Solution

    |

  13. If overline(b) and overline(c) are any two perpendicular unit vectors ...

    Text Solution

    |

  14. If overline(a),overline(b), overline(c) are three non-coplanar vectors...

    Text Solution

    |

  15. If overline(a),overline(b), overline(c) are three non-coplanar vectors...

    Text Solution

    |

  16. If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(...

    Text Solution

    |

  17. If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(...

    Text Solution

    |

  18. If overline(a), overline(b), overline(c) are three non-coplanar vector...

    Text Solution

    |

  19. If z1 and z2 are z co-ordinates of the point of trisection of the segm...

    Text Solution

    |

  20. Let square PQRS be a quadrilateral. If M and N are the mid-points of t...

    Text Solution

    |