Home
Class 12
MATHS
If overline(p)=(overline(b)timesoverline...

If `overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]])`, where `overline(a), overline(b), overline(c)` are three non-coplanar vectors, then `(overline(a)+overline(b)+overline(c))*(overline(p)+overline(q)+overline(r))=`

A

`3`

B

`2`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \((\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{p} + \overline{q} + \overline{r})\) using the definitions of the vectors \(\overline{p}\), \(\overline{q}\), and \(\overline{r}\). ### Step 1: Write down the expression We start with the expression we need to compute: \[ (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{p} + \overline{q} + \overline{r}) \] ### Step 2: Substitute the definitions of \(\overline{p}\), \(\overline{q}\), and \(\overline{r}\) Using the definitions given in the problem: \[ \overline{p} = \frac{\overline{b} \times \overline{c}}{[\overline{a}, \overline{b}, \overline{c}]}, \quad \overline{q} = \frac{\overline{c} \times \overline{a}}{[\overline{a}, \overline{b}, \overline{c}]}, \quad \overline{r} = \frac{\overline{a} \times \overline{b}}{[\overline{a}, \overline{b}, \overline{c}]} \] We can rewrite the expression as: \[ (\overline{a} + \overline{b} + \overline{c}) \cdot \left( \frac{\overline{b} \times \overline{c}}{[\overline{a}, \overline{b}, \overline{c}]} + \frac{\overline{c} \times \overline{a}}{[\overline{a}, \overline{b}, \overline{c}]} + \frac{\overline{a} \times \overline{b}}{[\overline{a}, \overline{b}, \overline{c}]} \right) \] ### Step 3: Factor out the scalar denominator The denominator is common in all three terms, so we can factor it out: \[ = \frac{1}{[\overline{a}, \overline{b}, \overline{c}]} \left( (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{b} \times \overline{c}) + (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{c} \times \overline{a}) + (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{a} \times \overline{b}) \right) \] ### Step 4: Evaluate each dot product 1. **First term**: \[ (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{b} \times \overline{c}) = \overline{a} \cdot (\overline{b} \times \overline{c}) + \overline{b} \cdot (\overline{b} \times \overline{c}) + \overline{c} \cdot (\overline{b} \times \overline{c}) \] The second and third terms are zero because the dot product of a vector with a cross product involving itself is zero. Thus: \[ = \overline{a} \cdot (\overline{b} \times \overline{c}) = [\overline{a}, \overline{b}, \overline{c}] \] 2. **Second term**: \[ (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{c} \times \overline{a}) = \overline{a} \cdot (\overline{c} \times \overline{a}) + \overline{b} \cdot (\overline{c} \times \overline{a}) + \overline{c} \cdot (\overline{c} \times \overline{a}) \] Again, the first and last terms are zero. Thus: \[ = \overline{b} \cdot (\overline{c} \times \overline{a}) = [\overline{b}, \overline{c}, \overline{a}] \] 3. **Third term**: \[ (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{a} \times \overline{b}) = \overline{a} \cdot (\overline{a} \times \overline{b}) + \overline{b} \cdot (\overline{a} \times \overline{b}) + \overline{c} \cdot (\overline{a} \times \overline{b}) \] The first and second terms are zero. Thus: \[ = \overline{c} \cdot (\overline{a} \times \overline{b}) = [\overline{c}, \overline{a}, \overline{b}] \] ### Step 5: Combine the results Now we combine the results: \[ = \frac{1}{[\overline{a}, \overline{b}, \overline{c}]} \left( [\overline{a}, \overline{b}, \overline{c}] + [\overline{b}, \overline{c}, \overline{a}] + [\overline{c}, \overline{a}, \overline{b}] \right) \] Since all the scalar triple products are equal, we have: \[ = \frac{3[\overline{a}, \overline{b}, \overline{c}]}{[\overline{a}, \overline{b}, \overline{c}]} = 3 \] ### Final Answer Thus, the final result is: \[ (\overline{a} + \overline{b} + \overline{c}) \cdot (\overline{p} + \overline{q} + \overline{r}) = 3 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , where overline(a), overline(b), overline(c) are three non-coplanar vectors, then (overline(a)-overline(b)-overline(c))*overline(p)-(overline(b)-overline(c)-overline(a))*overline(q)-(overline(c)-overline(a)-overline(b))*overline(r)=

If overline(a), overline(b) and overline(c) are three non-coplanar vectors, then (overline(a)+overline(b))*((overline(a)+overline(c))timesoverline(b))=

If overline(a),overline(b), overline(c) are three non-coplanar vectors and overline(p), overline(q), overline(r) are vectors defined by the relations overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , then (overline(a)+overline(b))*overline(p)+(overline(b)+overline(c))*overline(q)+(overline(c)+overline(a))*overline(r)=

[[overline(a), overline(b), overline(a)timesoverline(b)]]=

If overline(a), overline(b) and overline(c) are unit coplanar vectors, then [[2overline(a)-overline(b), 2overline(b)-overline(c), 2overline(c)-overline(a)]]=

[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]=

[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

If overline(c)=3overline(a)-2overline(b) , then [[overline(a), overline(b), overline(c)]]=

If overline(a), overline(b) and overline(c) are three non-coplanar vectors, then [[overline(a)+overline(b)+overline(c), overline(a)-overline(c), overline(a)-overline(b)]]=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(a), overline(b) and overline(c) are non-coplanar and (over...

    Text Solution

    |

  2. If overline(a), overline(b) and overline(c) are unit vectors perpendic...

    Text Solution

    |

  3. The value of [[overline(a)-overline(b), overline(b)-overline(c), overl...

    Text Solution

    |

  4. If |overline(a)|=5, |overline(b)|=3, |overline(c)|=4 and |overline(a)|...

    Text Solution

    |

  5. If overline(a) is perpendicular to overline(b) and overline(c), |overl...

    Text Solution

    |

  6. If |overline(c)|=1 and overline(c) is perpedicular to overline(a) and ...

    Text Solution

    |

  7. If overline(a)=hat(i)-hat(j), overline(b)=hat(j)-hat(k), overline(c)=h...

    Text Solution

    |

  8. If overline(b)=2hat(i)+hat(j)-hat(k), overline(c)=hat(i)+3hat(k) and o...

    Text Solution

    |

  9. If overline(a), overline(b), overline(c) are linearly independent, the...

    Text Solution

    |

  10. If overline(A),overline(B), overline(C) are three non-coplanar vector,...

    Text Solution

    |

  11. If overline(a), overline(b), overline(c) are non-coplanar vectors and ...

    Text Solution

    |

  12. If overline(a), overline(b), overline(c) are non-coplanar vectors and ...

    Text Solution

    |

  13. If overline(b) and overline(c) are any two perpendicular unit vectors ...

    Text Solution

    |

  14. If overline(a),overline(b), overline(c) are three non-coplanar vectors...

    Text Solution

    |

  15. If overline(a),overline(b), overline(c) are three non-coplanar vectors...

    Text Solution

    |

  16. If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(...

    Text Solution

    |

  17. If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(...

    Text Solution

    |

  18. If overline(a), overline(b), overline(c) are three non-coplanar vector...

    Text Solution

    |

  19. If z1 and z2 are z co-ordinates of the point of trisection of the segm...

    Text Solution

    |

  20. Let square PQRS be a quadrilateral. If M and N are the mid-points of t...

    Text Solution

    |