Home
Class 12
MATHS
If lim( xto 2 ) (f(x) -f(2))/( x-2) ex...

If ` lim_( xto 2 ) (f(x) -f(2))/( x-2) ` exist ,then

A

` underset(xto2^(-) )lim f(x) ne underset(xto2^(+) ) lim f(x) `

B

` f(x)` is differentiable

C

` underset (xto2) lim f(x) =f(2) `

D

`underset(xto 2 )lim f(x) ne f(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given limit: \[ \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} \] ### Step 1: Understanding the Limit The limit given in the problem is a standard form of the definition of the derivative of the function \( f(x) \) at the point \( x = 2 \). ### Step 2: Recognizing the Derivative From the definition of the derivative, we know that: \[ f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \] In our case, \( a = 2 \). Therefore, if the limit exists, it implies that: \[ f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} \] ### Step 3: Conclusion about Differentiability Since the limit exists, it indicates that the function \( f(x) \) is differentiable at \( x = 2 \). Differentiability at a point implies that the function is continuous at that point. ### Step 4: Implications of Differentiability If \( f(x) \) is differentiable at \( x = 2 \), it means: 1. The left-hand limit as \( x \) approaches 2 from the left equals the right-hand limit as \( x \) approaches 2 from the right. 2. The function is continuous at \( x = 2 \). ### Final Conclusion Thus, we conclude that if the limit exists, then \( f(x) \) is differentiable at \( x = 2 \).
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(f(x)-f(2))/(x-2)=

Let f (2) = 4 and f '(2) =4. If lim _( xto 2) (xf (2) -2 f (x))/(x-2)=-a, then a is

If f is derivable at x =a,then lim_(xto a )( (xf(a) -af( x))/(x-a) )

If f(2)=2 and f'(2)=1, and then lim_(x to 2) (2x^(2)-4f(x))/(x-2) is equal to

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

If f(x)={{:(mx^2+x+n,"," x lt 0),(nx +m ,"," 0 le x le 1),(2nx^3+x^2-2x+m,","x gt1):} and lim_(xto0)f(x) and lim_(xto1) f(x) exist then

Consider the following statements : 1. If lim_(xtoa) f(x) and lim_(xtoa) g(x) both exist, then lim_(xtoa) {f(x)g(x)} exists. 2. If lim_(xtoa) {f(x)g(x)} exists, then both lim_(xtoa) f(x) and lim_(xtoa) g(x) must exist. Which of the above statements is /are correct?

If lim_(xrarr2)(x^2f(2)-4f(x))/(x-2) . Given that f(2)=4 , f'(2)=1

If F(x)=sqrt(9-x^(2)) , then what is lim_(xto1) (F(x)-F(1))/(x-1) equal to?

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If f(x) = {{:( e^(x) +ax ,"for " x lt 0 ),( b(x-1) ^(2) ,"for " xge 0...

    Text Solution

    |

  2. If f (x)= ae^(|x|)+b |x|^(2) ,a ,b in R and f(x) is differentiable...

    Text Solution

    |

  3. If lim( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

    Text Solution

    |

  4. If f is derivable at x =a,then lim(xto a )( (xf(a) -af( x))/(x-a) )

    Text Solution

    |

  5. If the relation f'(a+b) =f'( a)+ f '(b) and (d)/(dx)(f(x))=f'(x) ,the...

    Text Solution

    |

  6. Derivative of even function is

    Text Solution

    |

  7. Derivative of odd function is

    Text Solution

    |

  8. If f (x) is polynomial of degree two and f(0) =4 f'(0) =3,f''(0) =4,th...

    Text Solution

    |

  9. If f (x) is a polynomial of degree two and f(0) =4 f'(0) =3,f'' (0) 4 ...

    Text Solution

    |

  10. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  11. For x in R, f(x) = | log 2- sin x| and g(x) = f(f(x)), then

    Text Solution

    |

  12. y=(5x^3-4x^2-8x)^9,f i n d(dy)/(dx)

    Text Solution

    |

  13. If y = (1)/( (x^(2) +3)) , then (dy)/(dx) =

    Text Solution

    |

  14. If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

    Text Solution

    |

  15. If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

    Text Solution

    |

  16. If y= 3sqrt ((2x^(2) -7x -4) ^(5) ) ,then (dy)/(dx) =

    Text Solution

    |

  17. If y= sqrt (x+ sqrt (x+ sqrt (x))),then (dy)/(dx) =

    Text Solution

    |

  18. If y=sqrt((1-x)/(1+x)), then (1-x^(2))(dy)/(dx)+y is equal to

    Text Solution

    |

  19. If y= (1)/(sqrt( 3x+ 7) )- (1)/(sqrt(7-3x) ),then (dy)/(dx) =

    Text Solution

    |

  20. If y= 1+x+ (x^(2)) /(2!) +(x^(3))/( 3!) +......infty ,then (dy)/(dx)...

    Text Solution

    |