Home
Class 12
MATHS
If f is derivable at x =a,then lim(xto...

If f is derivable at x =a,then ` lim_(xto a )( (xf(a) -af( x))/(x-a) ) `

A

` af '(a) -f(a)`

B

` f(a) -af'(a)`

C

` af(a) `

D

` -af '(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given that \( f \) is derivable at \( x = a \), we need to evaluate the limit: \[ \lim_{x \to a} \frac{xf(a) - af(x)}{x - a} \] ### Step 1: Substitute the limit First, we substitute \( x = a \) into the expression: \[ \frac{af(a) - af(a)}{a - a} = \frac{0}{0} \] This results in an indeterminate form \( \frac{0}{0} \), which allows us to apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: - **Numerator**: Differentiate \( xf(a) - af(x) \) - The derivative of \( xf(a) \) with respect to \( x \) is \( f(a) \) (since \( f(a) \) is a constant). - The derivative of \( -af(x) \) with respect to \( x \) is \( -af'(x) \). Thus, the derivative of the numerator is: \[ f(a) - af'(x) \] - **Denominator**: Differentiate \( x - a \) The derivative of \( x - a \) is simply \( 1 \). ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives we found: \[ \lim_{x \to a} \frac{f(a) - af'(x)}{1} \] ### Step 4: Substitute \( x = a \) again Now substitute \( x = a \) into the limit: \[ f(a) - af'(a) \] ### Final Result Thus, we conclude that: \[ \lim_{x \to a} \frac{xf(a) - af(x)}{x - a} = f(a) - af'(a) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

Write the value of (lim)_(x rarr a)(xf(a)-af(x))/(x-a)

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

What is lim_(xto0)(a^(x)-b^(x))/(x) ?

Evaluate lim_(xto 0)(a^(x)-b^(x))/x

Evaluate lim_(xto a)(log{1+(x-a)})/((x-a))

lim_(xto oo)(x/(1+x))^(x) is

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If f (x)= ae^(|x|)+b |x|^(2) ,a ,b in R and f(x) is differentiable...

    Text Solution

    |

  2. If lim( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

    Text Solution

    |

  3. If f is derivable at x =a,then lim(xto a )( (xf(a) -af( x))/(x-a) )

    Text Solution

    |

  4. If the relation f'(a+b) =f'( a)+ f '(b) and (d)/(dx)(f(x))=f'(x) ,the...

    Text Solution

    |

  5. Derivative of even function is

    Text Solution

    |

  6. Derivative of odd function is

    Text Solution

    |

  7. If f (x) is polynomial of degree two and f(0) =4 f'(0) =3,f''(0) =4,th...

    Text Solution

    |

  8. If f (x) is a polynomial of degree two and f(0) =4 f'(0) =3,f'' (0) 4 ...

    Text Solution

    |

  9. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  10. For x in R, f(x) = | log 2- sin x| and g(x) = f(f(x)), then

    Text Solution

    |

  11. y=(5x^3-4x^2-8x)^9,f i n d(dy)/(dx)

    Text Solution

    |

  12. If y = (1)/( (x^(2) +3)) , then (dy)/(dx) =

    Text Solution

    |

  13. If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

    Text Solution

    |

  14. If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

    Text Solution

    |

  15. If y= 3sqrt ((2x^(2) -7x -4) ^(5) ) ,then (dy)/(dx) =

    Text Solution

    |

  16. If y= sqrt (x+ sqrt (x+ sqrt (x))),then (dy)/(dx) =

    Text Solution

    |

  17. If y=sqrt((1-x)/(1+x)), then (1-x^(2))(dy)/(dx)+y is equal to

    Text Solution

    |

  18. If y= (1)/(sqrt( 3x+ 7) )- (1)/(sqrt(7-3x) ),then (dy)/(dx) =

    Text Solution

    |

  19. If y= 1+x+ (x^(2)) /(2!) +(x^(3))/( 3!) +......infty ,then (dy)/(dx)...

    Text Solution

    |

  20. If y = (1)/(1+x^( p-r) +x^(q-r)) +(1)/( 1+ x^(p-q) +x^(r-q) )+ (1) /( ...

    Text Solution

    |