Home
Class 12
MATHS
If y= 1+x+ (x^(2)) /(2!) +(x^(3))/( 3!...

If y= ` 1+x+ (x^(2)) /(2!) +(x^(3))/( 3!) +......infty ,then (dy)/(dx) ` =

A

y

B

`-y`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given infinite series representation of \( y \): \[ y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] This series is the Taylor series expansion for \( e^x \). However, let's derive \( \frac{dy}{dx} \) step by step. ### Step 1: Write down the function We start with the function: \[ y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] ### Step 2: Differentiate term by term We differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x\right) + \frac{d}{dx}\left(\frac{x^2}{2!}\right) + \frac{d}{dx}\left(\frac{x^3}{3!}\right) + \ldots \] ### Step 3: Calculate each derivative Calculating the derivatives of each term: 1. The derivative of \( 1 \) is \( 0 \). 2. The derivative of \( x \) is \( 1 \). 3. The derivative of \( \frac{x^2}{2!} \) is \( \frac{2x}{2!} = \frac{x}{1!} \). 4. The derivative of \( \frac{x^3}{3!} \) is \( \frac{3x^2}{3!} = \frac{x^2}{2!} \). 5. Continuing this process, the \( n^{th} \) term \( \frac{x^n}{n!} \) will differentiate to \( \frac{nx^{n-1}}{n!} = \frac{x^{n-1}}{(n-1)!} \). ### Step 4: Rewrite the series Thus, we can rewrite the differentiated series: \[ \frac{dy}{dx} = 0 + 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] ### Step 5: Recognize the series Notice that this series is the same as the original series for \( y \): \[ \frac{dy}{dx} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots = y \] ### Final Result Thus, we conclude that: \[ \frac{dy}{dx} = y \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=1(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+......, then (dy)/(dx)

If y= x^(2) +(1)/( x^(2) + (1)/( x^(2) +...infty )),then (dy)/(dx) =

If y =e^(x+e^(x+e^(x+...infty ))),then (dy)/(dx) =

If y=x+(1)/(x+(1)/(x+...........infty)) then (dy)/(dx)=

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, show that (dy)/(dx)=y

If y^(3) - 3y^(2) x=x^(3) +3x^(2) y,then (dy)/(dx)=

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, is (dy)/(dx)=y+1 b.y-1 c.y d.y^(2)

If y=(x cot^(3)x)^(3/2) , then (dy)/(dx)=

" If (x^(2))/(a^(2))-(y^(2))/(b^(3))=1 then " (dy)/(dx)=