Home
Class 12
MATHS
If y =sin (x^(2) +x) ,then (dy)/(dx) =...

If y ` =sin (x^(2) +x) ,then (dy)/(dx) =`

A

` -(2x +1) cos (x^(2) +x) `

B

` (2x +1)cos (x^(2) +x) `

C

`2xcos (x^(2) +5) `

D

` (2x+ 5)cos (x^(2) +5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y' = \sin(x^2 + x) \), we need to find \( \frac{dy}{dx} \). ### Step-by-step Solution: 1. **Identify the function**: We have \( y = \sin(x^2 + x) \). 2. **Differentiate using the chain rule**: To differentiate \( y \), we will use the chain rule. The chain rule states that if you have a function \( y = \sin(u) \) where \( u = x^2 + x \), then: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] 3. **Differentiate \( y \) with respect to \( u \)**: The derivative of \( \sin(u) \) with respect to \( u \) is: \[ \frac{dy}{du} = \cos(u) \] 4. **Differentiate \( u \) with respect to \( x \)**: Now we need to find \( \frac{du}{dx} \) where \( u = x^2 + x \): \[ \frac{du}{dx} = \frac{d}{dx}(x^2) + \frac{d}{dx}(x) = 2x + 1 \] 5. **Combine the derivatives**: Now substitute \( u \) back into the equation: \[ \frac{dy}{dx} = \cos(x^2 + x) \cdot (2x + 1) \] 6. **Final answer**: Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (2x + 1) \cos(x^2 + x) \] ### Summary: The final result is: \[ \frac{dy}{dx} = (2x + 1) \cos(x^2 + x) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sin (x^(2) +x+5) ,then (dy)/(dx) =

If y= sin (x^(2) +5) , then (dy)/(dx) =

If y=sin(x^(2)+!) then (dy)/(dx)=

If y = sin (x^(x)) " then " (dy)/(dx) = ?

y=x^(x sin x) then (dy)/(dx)

If y=e^(sin^(2)x) then (dy)/(dx)=

y= sin(x^(2)) , Find (dy)/(dx)

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)

If x ^(2) + y ^(2) = sin ( x + y), then (dy)/(dx) =

If y = sin ( x^2 ) , then dy/dx =