Home
Class 12
MATHS
If y= sin (x^(2) +5) , then (dy)/(dx) =...

If ` y= sin (x^(2) +5) , then (dy)/(dx) =`

A

` xcos (x^(2) +5)`

B

` (x+ 5) cos (x^(2)+ 5) `

C

` 2xcos (x^(2) +5) `

D

` (2x+ 5)cos (x^(2) +5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(x^2 + 5) \), we will use the chain rule of differentiation. The chain rule states that if you have a composite function \( y = f(g(x)) \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] ### Step-by-Step Solution: 1. **Identify the outer and inner functions**: - Here, the outer function \( f(u) = \sin(u) \) where \( u = g(x) = x^2 + 5 \). 2. **Differentiate the outer function**: - The derivative of \( f(u) = \sin(u) \) is \( f'(u) = \cos(u) \). 3. **Differentiate the inner function**: - The inner function is \( g(x) = x^2 + 5 \). - The derivative of \( g(x) \) is \( g'(x) = 2x \). 4. **Apply the chain rule**: - Now, using the chain rule: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) = \cos(x^2 + 5) \cdot 2x \] 5. **Final expression**: - Therefore, the derivative is: \[ \frac{dy}{dx} = 2x \cos(x^2 + 5) \] ### Final Answer: \[ \frac{dy}{dx} = 2x \cos(x^2 + 5) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sin (x^(2) +x+5) ,then (dy)/(dx) =

If y =sin (x^(2) +x) ,then (dy)/(dx) =

If y=a ^(5sin (x) ) ,then (dy)/(dx) =

If y = sin (x^(x)) " then " (dy)/(dx) = ?

If y = sin ( x^2 ) , then dy/dx =

If y= sin(x^(2)) , Find (dy)/(dx)

If y=sin(x^(2)+!) then (dy)/(dx)=

If y=sin(2 sin^(-1)x) , then (dy)/(dx) =

If   y=sin(x^(x)) ,then ((dy)/(dx))=?