Home
Class 12
MATHS
If y =sin (ax^(2) +bx +c ) then (dy)/(d...

If ` y =sin (ax^(2) +bx +c ) then (dy)/(dx) =`

A

` (2ax +b) sin (ax^(2) +bx +c)`

B

` (2ax +b) cos (ax^(2) +bx +c)`

C

` (2ax +2b) cos (ax^(2) +bx +c)`

D

` (2ax +2b) sin (ax^(2) +bx +c)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(ax^2 + bx + c) \), we will use the chain rule of differentiation. Here are the steps to solve the problem: ### Step 1: Identify the outer and inner functions In this case, the outer function is \( \sin(u) \) where \( u = ax^2 + bx + c \). ### Step 2: Differentiate the outer function The derivative of \( \sin(u) \) with respect to \( u \) is \( \cos(u) \). Thus, we have: \[ \frac{dy}{du} = \cos(ax^2 + bx + c) \] ### Step 3: Differentiate the inner function Now we need to differentiate the inner function \( u = ax^2 + bx + c \) with respect to \( x \): \[ \frac{du}{dx} = \frac{d}{dx}(ax^2 + bx + c) = 2ax + b \] (Note: The derivative of \( c \) is 0 since it is a constant.) ### Step 4: Apply the chain rule According to the chain rule, we multiply the derivative of the outer function by the derivative of the inner function: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos(ax^2 + bx + c) \cdot (2ax + b) \] ### Step 5: Write the final answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (2ax + b) \cos(ax^2 + bx + c) \] ### Summary of the steps: 1. Identify the outer and inner functions. 2. Differentiate the outer function. 3. Differentiate the inner function. 4. Apply the chain rule to combine the results. 5. Write the final answer.
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

int (ax^(2)+bx+c)dx

If y=e^(ax) ,then (dy)/(dx) =

y=logx/(a+bx) then (dy)/(dx)

int(ax^(2)+bx+c)dx

int(ax^(2)+bx+c)dx

int(ax^(2)+bx+c)dx

y=log(x/(1+bx)) then (dy)/(dx)

if y=ax^(2)+bx+c find (dy)/(dx) when x=2

If sin y=x sin(a+y), then (dy)/(dx) is (a) (sin a)/(sin a sin^(2)(a+y))(b)(s in^(2)(a+y))/(sin a)(c)sin a sin^(2)(a+y)(d)(sin^(2)(a-y))/(sin a)