Home
Class 12
MATHS
If y= sin (cos (tan x)) ,then (dy)/(dx)...

If ` y= sin (cos (tan x)) ,then (dy)/(dx) =`

A

` -sin (cos (tan x )) sin (tan x ) sec ^(2) x `

B

` sin (cos (tanx ))sin (tan x )sec ^(2) x`

C

` -cos (cos (tan x ) )sin (tan x ) sec ^(2) x`

D

` cos (cos (tan x ) )sin (tan x ) sec ^(2) x `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(\cos(\tan x)) \), we will use the chain rule of differentiation. The chain rule states that if you have a composite function, the derivative can be found by multiplying the derivatives of the outer function and the inner function. ### Step-by-Step Solution: 1. **Identify the outer and inner functions**: - Let \( u = \cos(\tan x) \) (inner function) - Therefore, \( y = \sin(u) \) (outer function) 2. **Differentiate the outer function**: - The derivative of \( y = \sin(u) \) with respect to \( u \) is: \[ \frac{dy}{du} = \cos(u) \] 3. **Differentiate the inner function**: - Now we need to differentiate \( u = \cos(\tan x) \) with respect to \( x \). - Let \( v = \tan x \) (inner function of \( u \)) - Therefore, \( u = \cos(v) \) - The derivative of \( u = \cos(v) \) with respect to \( v \) is: \[ \frac{du}{dv} = -\sin(v) \] 4. **Differentiate \( v = \tan x \)**: - The derivative of \( v = \tan x \) with respect to \( x \) is: \[ \frac{dv}{dx} = \sec^2(x) \] 5. **Apply the chain rule**: - Now, using the chain rule: \[ \frac{du}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx} = -\sin(v) \cdot \sec^2(x) \] - Substitute back \( v = \tan x \): \[ \frac{du}{dx} = -\sin(\tan x) \cdot \sec^2(x) \] 6. **Combine the derivatives**: - Now we can find \( \frac{dy}{dx} \) using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos(u) \cdot \frac{du}{dx} \] - Substitute back \( u = \cos(\tan x) \): \[ \frac{dy}{dx} = \cos(\cos(\tan x)) \cdot \left(-\sin(\tan x) \cdot \sec^2(x)\right) \] 7. **Final expression**: - Thus, the final answer is: \[ \frac{dy}{dx} = -\cos(\cos(\tan x)) \cdot \sin(\tan x) \cdot \sec^2(x) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos (sin x ),then (dy)/(dx) =

if y=(sin x)^(cos x). Then (dy)/(dx)=

If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

If y=sin x+cos x then (dy)/(dx) =

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to