Home
Class 12
MATHS
If y= sin sqrt ( sin sqrt x) ,then (dy)...

If y= ` sin sqrt ( sin sqrt x) ,then (dy)/( dx) =`

A

` (cos sqrtx cos sqrt sin sqrt x )/( 2sqrt x sin sqrt x )`

B

` (cos sqrtx cos sqrt sin sqrt x )/( 2sqrt sin sqrt x )`

C

` (cos sqrtx cos sqrt sin sqrt x )/( 4sqrt x sin sqrt x )`

D

` (cos sqrtx cos sqrt sin sqrt x )/( 4sqrt sin sqrt x )`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(\sqrt{\sin(\sqrt{x})}) \), we will apply the chain rule multiple times. Here’s the step-by-step solution: ### Step 1: Differentiate the outer function The outer function is \( \sin(u) \) where \( u = \sqrt{\sin(\sqrt{x})} \). The derivative of \( \sin(u) \) is \( \cos(u) \cdot \frac{du}{dx} \). \[ \frac{dy}{dx} = \cos(\sqrt{\sin(\sqrt{x})}) \cdot \frac{d}{dx}(\sqrt{\sin(\sqrt{x})}) \] ### Step 2: Differentiate the middle function Now we need to differentiate \( \sqrt{v} \) where \( v = \sin(\sqrt{x}) \). The derivative of \( \sqrt{v} \) is \( \frac{1}{2\sqrt{v}} \cdot \frac{dv}{dx} \). \[ \frac{d}{dx}(\sqrt{\sin(\sqrt{x})}) = \frac{1}{2\sqrt{\sin(\sqrt{x})}} \cdot \frac{d}{dx}(\sin(\sqrt{x})) \] ### Step 3: Differentiate the innermost function Next, we differentiate \( \sin(w) \) where \( w = \sqrt{x} \). The derivative of \( \sin(w) \) is \( \cos(w) \cdot \frac{dw}{dx} \). \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x}) \] ### Step 4: Differentiate \( \sqrt{x} \) The derivative of \( \sqrt{x} \) is \( \frac{1}{2\sqrt{x}} \). Putting it all together: \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 5: Combine all parts Now we can substitute back into our previous expressions: 1. From Step 3: \[ \frac{d}{dx}(\sqrt{\sin(\sqrt{x})}) = \frac{1}{2\sqrt{\sin(\sqrt{x})}} \cdot \left(\cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right) \] 2. Substitute this into Step 1: \[ \frac{dy}{dx} = \cos(\sqrt{\sin(\sqrt{x})}) \cdot \left(\frac{1}{2\sqrt{\sin(\sqrt{x})}} \cdot \left(\cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right)\right) \] ### Final Expression Combining everything, we get: \[ \frac{dy}{dx} = \frac{\cos(\sqrt{\sin(\sqrt{x})}) \cdot \cos(\sqrt{x})}{4\sqrt{x} \cdot \sqrt{\sin(\sqrt{x})}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y =sqrt sin sqrtx ,then (dy)/(dx) =

If y= sqrt (sin x +sqrt cos x ), then (dy)/(dx) =

If y=sin[sqrt(sin sqrtx)] , find (dy)/(dx) .

If y = sqrt(x sin x) " then "(dy)/(dx) = ?

If y=sqrt sin x,then (dy)/(dx) =

If y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =

If y = sqrt(sin x + y), then (dy)/(dx)=

If y= (a^(sqrt x) ) ^(sin x) ,then (dy)/(dx) =

If y=sqrt(sin x+y), then find(dy)/(dx)