Home
Class 12
MATHS
If y= cos sqrtx ,then (dy)/(dx) =...

If `y= cos sqrtx ,then (dy)/(dx) ` =

A

` (sin sqrtx )/( 2sqrtx) `

B

` (-sin sqrtx )/( 2sqrtx) `

C

` (sin sqrtx )/( 2xsqrtx) `

D

` (-sin sqrtx )/( 2xsqrtx) `

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos(\sqrt{x}) \), we will use the chain rule. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions In the function \( y = \cos(\sqrt{x}) \), we can identify: - The outer function is \( \cos(u) \) where \( u = \sqrt{x} \). - The inner function is \( u = \sqrt{x} \). ### Step 2: Differentiate the outer function The derivative of the outer function \( \cos(u) \) with respect to \( u \) is: \[ \frac{d}{du}(\cos(u)) = -\sin(u) \] ### Step 3: Differentiate the inner function Now, we differentiate the inner function \( u = \sqrt{x} \): \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] ### Step 4: Apply the chain rule Using the chain rule, we can now find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 5: Simplify the expression Thus, we can write: \[ \frac{dy}{dx} = -\frac{\sin(\sqrt{x})}{2\sqrt{x}} \] ### Final Answer The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{\sin(\sqrt{x})}{2\sqrt{x}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos (sin x ),then (dy)/(dx) =

If y=sin x+cos x then (dy)/(dx) =

If y =sqrt sin sqrtx ,then (dy)/(dx) =

If y = x^(sqrtx) " then " (dy)/(dx) = ?

If y=cos(x+y)," then "(dy)/(dx)=

If y=cos^2x , then find (dy)/(dx) .

If y = e^(sin sqrtx) " then " (dy)/(dx) = ?

If y=cos x^(2) , then find (dy)/(dx) .