Home
Class 12
MATHS
If y=cos (2x +45^(@) ),then (dy)/(dx) =...

` If y=cos (2x +45^(@) ),then (dy)/(dx) =`

A

` 2sin (2x +45^(@) ) `

B

` -2sin (2x +45^(@) ) `

C

` (pi)/( 90) sin (2x +45^(@) ) `

D

` (-pi)/( 90 ) sin ( 2x + 45^(@) ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos(2x + 45^\circ) \), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ y = \cos(2x + 45^\circ) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The derivative of \( \cos(u) \) is \( -\sin(u) \cdot \frac{du}{dx} \), where \( u = 2x + 45^\circ \). ### Step 3: Find \( \frac{du}{dx} \) First, we differentiate \( u \): \[ u = 2x + 45^\circ \] The derivative \( \frac{du}{dx} \) is: \[ \frac{du}{dx} = 2 \] ### Step 4: Apply the chain rule Now, we apply the chain rule: \[ \frac{dy}{dx} = -\sin(u) \cdot \frac{du}{dx} \] Substituting \( u \) and \( \frac{du}{dx} \): \[ \frac{dy}{dx} = -\sin(2x + 45^\circ) \cdot 2 \] ### Step 5: Simplify the expression Thus, we can simplify this to: \[ \frac{dy}{dx} = -2\sin(2x + 45^\circ) \] ### Final Answer The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = -2\sin(2x + 45^\circ) \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= cos (x^(2) e^(x) ),then (dy)/(dx) =

If y=cos x^(2) , then find (dy)/(dx) .

If y = cos^(2) x^(3) " then "(dy)/(dx) = ?

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y=cos^(2) x , then find (dy)/(dx) .

If cos (xy) =x+ y ,then (dy)/(dx)=

If y = log ( cos e ^(x)), then (dy)/(dx)=

If y= ( cos x ^(2))^(2) , "then" (dy)/(dx) is equal to

If y=cos^(2)x^(2) , find (dy)/(dx) .