Home
Class 12
MATHS
If y=cos (sin x ),then (dy)/(dx) =...

If `y=cos (sin x )`,then `(dy)/(dx) =`

A

` (sin x ) sin (sin x ) `

B

` -(sinx ) sin (sin x) `

C

` (cos x )sin (sin x) `

D

` -(cos x )sin ( sin x ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos(\sin x) \), we will use the chain rule of differentiation. Here is the step-by-step solution: ### Step 1: Identify the outer and inner functions In the function \( y = \cos(\sin x) \), we can identify: - The outer function \( f(u) = \cos(u) \) where \( u = \sin x \). - The inner function \( g(x) = \sin x \). ### Step 2: Differentiate the outer function The derivative of the outer function \( f(u) = \cos(u) \) is: \[ f'(u) = -\sin(u) \] So, when we substitute back \( u = \sin x \), we have: \[ f'(\sin x) = -\sin(\sin x) \] ### Step 3: Differentiate the inner function Next, we differentiate the inner function \( g(x) = \sin x \): \[ g'(x) = \cos x \] ### Step 4: Apply the chain rule According to the chain rule, the derivative of \( y \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] Substituting the derivatives we found: \[ \frac{dy}{dx} = -\sin(\sin x) \cdot \cos x \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\sin(\sin x) \cos x \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y+cos y=sin x then find (dy)/(dx)

If cos (xy) =sin (x+y) ,then (dy)/(dx)

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If y=log_(sin x)cos x, then (dy)/(dx) is equal to

If y=log (sin x +cos x ) ,then (dy)/(dx)

If y=|cos x|+|sin x|, then (dy)/(dx)atx=(2 pi)/(3) is (1-sqrt(3))/(2)(b)0(c)(1)/(2)(sqrt(3)-1) (d) none of these

If Y = ((2 - 3 cos x)/("sin" x)) , then (dy)/(dx) at x = (pi)/(4) is

If y=sin x+cos x then (dy)/(dx) =

If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?