Home
Class 12
MATHS
If y= cos (x^(2) e^(x) ),then (dy)/(dx) ...

` If y= cos (x^(2) e^(x) ),then (dy)/(dx) =`

A

` e^(x) (x^(2)+2)sin (x^(2) e^(x)) `

B

`- e^(x) (x^(2)+2)sin (x^(2) e^(x)) `

C

`x e^(x) (x+2)sin (x^(2) e^(x)) `

D

`-x e^(x) (x+2)sin (x^(2) e^(x)) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos(x^2 e^x) \), we will use the chain rule and the product rule. Here’s the step-by-step solution: ### Step 1: Identify the outer function and the inner function Let \( u = x^2 e^x \). Then, we can rewrite \( y \) as: \[ y = \cos(u) \] ### Step 2: Differentiate the outer function Using the chain rule, the derivative of \( y \) with respect to \( u \) is: \[ \frac{dy}{du} = -\sin(u) \] ### Step 3: Differentiate the inner function Now we need to differentiate \( u = x^2 e^x \). We will apply the product rule here. The product rule states that if you have two functions \( f(x) \) and \( g(x) \), then: \[ \frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x) \] For our case, let \( f(x) = x^2 \) and \( g(x) = e^x \). First, we find the derivatives: - \( f'(x) = 2x \) - \( g'(x) = e^x \) Now applying the product rule: \[ \frac{du}{dx} = f'(x)g(x) + f(x)g'(x) = (2x)(e^x) + (x^2)(e^x) \] This simplifies to: \[ \frac{du}{dx} = e^x(2x + x^2) \] ### Step 4: Combine the derivatives using the chain rule Now we can use the chain rule to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = -\sin(u) \cdot e^x(2x + x^2) \] Substituting back \( u = x^2 e^x \): \[ \frac{dy}{dx} = -\sin(x^2 e^x) \cdot e^x(2x + x^2) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -e^x(2x + x^2) \sin(x^2 e^x) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos (2x +45^(@) ),then (dy)/(dx) =

If y = cos^(2) x^(3) " then "(dy)/(dx) = ?

If y = log ( cos e ^(x)), then (dy)/(dx)=

if y^(x)=e^(y-x) then (dy)/(dx)

If y = log (cos e^(x)), then (dy)/(dx) is:

If y=cos^(-1)(e^(-x)) then find (dy)/(dx)

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If y=cos^(2) x , then find (dy)/(dx) .

If y=cos x^(2) , then find (dy)/(dx) .