Home
Class 12
MATHS
If y= sec ( tan sqrt x ) ,then (dy)/(dx...

If ` y= sec ( tan sqrt x ) ,then (dy)/(dx) =`

A

`(tan sqrt xsec ^(2) sqrtx sec (tan sqrtx ))/( 2sqrtx) `

B

` (sec^(2)sqrt ( x)sec (tan sqrt x ) tan (tan sqrt x))/( 2sqrtx ) `

C

` (sec ^(2) sqrt x sec ( tan sqrt x) tan (tan sqrt x))/( sqrt x) `

D

` (tan sqrtx sec ^(2) sqrtx sec (tan sqrtx ))/( sqrtx) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sec(\tan(\sqrt{x})) \), we will apply the chain rule of differentiation step by step. ### Step 1: Identify the outer and inner functions Let: - \( u = \tan(\sqrt{x}) \) - \( y = \sec(u) \) ### Step 2: Differentiate \( y \) with respect to \( u \) Using the derivative of the secant function: \[ \frac{dy}{du} = \sec(u) \tan(u) \] ### Step 3: Differentiate \( u \) with respect to \( x \) Now we need to differentiate \( u = \tan(\sqrt{x}) \). We apply the chain rule again: - Let \( v = \sqrt{x} \) - Then \( u = \tan(v) \) First, we differentiate \( u \) with respect to \( v \): \[ \frac{du}{dv} = \sec^2(v) \] Next, we differentiate \( v \) with respect to \( x \): \[ \frac{dv}{dx} = \frac{1}{2\sqrt{x}} \] Now, we can find \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx} = \sec^2(v) \cdot \frac{1}{2\sqrt{x}} = \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 4: Combine the derivatives using the chain rule Now we can combine the derivatives using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \sec(u) \tan(u) \cdot \frac{du}{dx} = \sec(\tan(\sqrt{x})) \tan(\tan(\sqrt{x})) \cdot \left( \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \right) \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \sec(\tan(\sqrt{x})) \tan(\tan(\sqrt{x})) \cdot \frac{\sec^2(\sqrt{x})}{2\sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y =sqrt (tan sqrt x ), then (dy)/(dx) =

If y sec x+ tan x +x^2 y=0 , then (dy)/(dx) =

If y=log(sec x+tan x), then (dy)/(dx)=

y=tan^(-1)sqrt(x)then-(dy)/(dx)=

If y= sec (tan^(-1)x)," then "(dy)/(dx)" at " x = 1 is equal to

If y=(xtan x ) ^(sec x),then (dy)/(dx) =