Home
Class 12
MATHS
If y=sqrt sin x,then (dy)/(dx) =...

If ` y=sqrt sin x,then (dy)/(dx) =`

A

` (cos x )/(2sqrt sin x) `

B

` (-cos x)/(2sqrtsin x)`

C

` (cos x )/(sqrtsin x ) `

D

` (-cos x)/(sqrtsin x )`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{\sin x} \), we will use the chain rule and the basic rules of differentiation. Here’s the step-by-step solution: ### Step 1: Rewrite the function We start with the function: \[ y = \sqrt{\sin x} \] This can be rewritten using exponent notation: \[ y = (\sin x)^{1/2} \] ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we apply the chain rule. The chain rule states that if \( y = u^n \), then: \[ \frac{dy}{dx} = n \cdot u^{n-1} \cdot \frac{du}{dx} \] In our case, \( u = \sin x \) and \( n = \frac{1}{2} \). Thus, we have: \[ \frac{dy}{dx} = \frac{1}{2} (\sin x)^{-1/2} \cdot \frac{d}{dx}(\sin x) \] ### Step 3: Differentiate \( \sin x \) Now we differentiate \( \sin x \): \[ \frac{d}{dx}(\sin x) = \cos x \] ### Step 4: Substitute back into the derivative Now we substitute \( \frac{d}{dx}(\sin x) \) back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2} (\sin x)^{-1/2} \cdot \cos x \] ### Step 5: Rewrite in terms of square root We can rewrite \( (\sin x)^{-1/2} \) as \( \frac{1}{\sqrt{\sin x}} \): \[ \frac{dy}{dx} = \frac{\cos x}{2 \sqrt{\sin x}} \] ### Final Answer Thus, the derivative of \( y = \sqrt{\sin x} \) is: \[ \frac{dy}{dx} = \frac{\cos x}{2 \sqrt{\sin x}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y =sqrt sin sqrtx ,then (dy)/(dx) =

If y=sqrt(sin x+y,) then (dy)/(dx)=(sin x)/(2y-1) (b) (sin x)/(1-2y)(c)(cos x)/(1-2y)(d)(cos x)/(2y-1)

If y=sqrt(sin x+y), then (dy)/(dx)=(sin x)/(2y-1) (b) (sin x)/(1-2y)(c)(cos x)/(1-2y)(d)(cos x)/(2y-1)

If y=sqrt(sin x+y), then (dy)/(dx) equals (cos x)/(2y-1) (b) (cos x)/(1-2y)(c)(sin x)/(1-2y)(d)(sin x)/(2y-1)

If y^y=x sin y , then (dy)/(dx) =

If y = sqrt(x sin x) " then "(dy)/(dx) = ?

If y = sqrt(sin x + y), then (dy)/(dx)=

If y=sqrt(sin x+y), then find(dy)/(dx)

If y= sqrt (sin x +sqrt cos x ), then (dy)/(dx) =

If y= sin sqrt ( sin sqrt x) ,then (dy)/( dx) =