Home
Class 12
MATHS
If y =sqrt sin sqrtx ,then (dy)/(dx) =...

` If y =sqrt sin sqrtx ,then (dy)/(dx) =`

A

` (cos sqrt x)/( 2sqrtsin sqrtx ) `

B

` (cos sqrt x)/(4sqrt sin sqrtx ) `

C

` (cos sqrtx)/(2sqrtxsin sqrtx) `

D

` (cos sqrtx)/( 4sqrt(xsin sqrtx ) )`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sqrt{\sin(\sqrt{x})} \), we will use the chain rule and the product rule of differentiation. Here’s a step-by-step solution: ### Step 1: Rewrite the function We start with the function: \[ y = \sqrt{\sin(\sqrt{x})} \] This can be rewritten as: \[ y = (\sin(\sqrt{x}))^{1/2} \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we apply the chain rule. The derivative of \( u^{n} \) is \( n \cdot u^{n-1} \cdot \frac{du}{dx} \). Here, \( u = \sin(\sqrt{x}) \) and \( n = \frac{1}{2} \): \[ \frac{dy}{dx} = \frac{1}{2} (\sin(\sqrt{x}))^{-1/2} \cdot \frac{d}{dx}(\sin(\sqrt{x})) \] ### Step 3: Differentiate \( \sin(\sqrt{x}) \) Now we need to differentiate \( \sin(\sqrt{x}) \). Again, we will use the chain rule: \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x}) \] The derivative of \( \sqrt{x} \) is: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] Thus, we have: \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 4: Substitute back into the derivative Now we substitute this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2} (\sin(\sqrt{x}))^{-1/2} \cdot \left(\cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right) \] ### Step 5: Simplify the expression Putting it all together, we get: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{\cos(\sqrt{x})}{2\sqrt{x} \sqrt{\sin(\sqrt{x})}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\cos(\sqrt{x})}{4\sqrt{x} \sqrt{\sin(\sqrt{x})}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\cos(\sqrt{x})}{4\sqrt{x} \sqrt{\sin(\sqrt{x})}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y =sqrt (tan sqrt x ), then (dy)/(dx) =

If y=sqrt sin x,then (dy)/(dx) =

If y= cos sqrtx ,then (dy)/(dx) =

If y = sqrt(sin x + y), then (dy)/(dx)=

If y = e^(sin sqrtx) " then " (dy)/(dx) = ?

If y= sin sqrt ( sin sqrt x) ,then (dy)/( dx) =

If y = sqrt(x sin x) " then "(dy)/(dx) = ?

If y=sqrt(sin x+y), then find(dy)/(dx)

If y=sin[sqrt(sin sqrtx)] , find (dy)/(dx) .