Home
Class 12
MATHS
If y =sqrt (tan sqrt x ), then (dy)/(dx)...

` If y =sqrt (tan sqrt x ), then (dy)/(dx) =`

A

`(sec^(2)sqrtx)/( 4sqrt(xtan sqrt x)) `

B

` (sec ^(2)sqrt x)/( 2sqrt(xtan sqrtx))`

C

` (sec ^(2)sqrt(x))/(4sqrt(tan x sqrt(x)))`

D

` (sec ^(2)sqrtx)/(2sqrttan xsqrtx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sqrt{\tan(\sqrt{x})} \), we will use the chain rule and the differentiation formulas for square roots and trigonometric functions. Here is the step-by-step solution: ### Step 1: Identify the outer and inner functions Let \( u = \tan(\sqrt{x}) \). Then, we can rewrite \( y \) as: \[ y = \sqrt{u} \] ### Step 2: Differentiate the outer function Using the formula for the derivative of \( \sqrt{u} \): \[ \frac{dy}{du} = \frac{1}{2\sqrt{u}} \] ### Step 3: Differentiate the inner function Now we need to differentiate \( u = \tan(\sqrt{x}) \). Using the chain rule: \[ \frac{du}{dx} = \sec^2(\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x}) \] The derivative of \( \sqrt{x} \) is: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] Thus, we have: \[ \frac{du}{dx} = \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 4: Combine the derivatives using the chain rule Now we can find \( \frac{dy}{dx} \) using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\tan(\sqrt{x})}} \cdot \left( \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \right) \] ### Step 5: Simplify the expression Now we simplify: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\tan(\sqrt{x})}} \cdot \frac{\sec^2(\sqrt{x})}{2\sqrt{x}} = \frac{\sec^2(\sqrt{x})}{4\sqrt{x}\sqrt{\tan(\sqrt{x})}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\sec^2(\sqrt{x})}{4\sqrt{x}\sqrt{\tan(\sqrt{x})}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= sec ( tan sqrt x ) ,then (dy)/(dx) =

If y = sqrt(sin x + y), then (dy)/(dx)=

If y = sqrt(x sin x) " then "(dy)/(dx) = ?

If y= sqrt (sin x +sqrt cos x ), then (dy)/(dx) =

If y=sqrt(e^sqrt(x)) then find (dy)/(dx)

If y= sin sqrt ( sin sqrt x) ,then (dy)/( dx) =

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx)=

if y=sqrt(tan^-1sqrtx) , then find dy/dx