Home
Class 12
MATHS
If y=cos (x^(3)) sin ^(2) (x^(5)),then ...

If ` y=cos (x^(3)) sin ^(2) (x^(5)),then (dy)/(dx) =`

A

` 5x^(4)sin (x^(3))sin (2x^(5))-3x^(2) cos (x^(3))sin ( x^(5))`

B

` 5x^(4)sin (x^(3))sin (2x^(5))+ 3x^(2) cos (x^(3))sin ( x^(5))`

C

` 5x^(4)sin (x^(3))sin (2x^(5))- 3x^(2) sin (x^(3))sin^(2) ( x^(5))`

D

` 5x^(4)sin (x^(3))sin (2x^(5))+ 3x^(2) sin (x^(3))sin^(2) ( x^(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos(x^3) \sin^2(x^5) \), we will use the product rule and the chain rule of differentiation. ### Step-by-Step Solution: 1. **Identify the components of the function**: The function can be expressed as: \[ y = u \cdot v \] where \( u = \cos(x^3) \) and \( v = \sin^2(x^5) \). 2. **Apply the product rule**: The product rule states that: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] 3. **Find \( \frac{du}{dx} \)**: To differentiate \( u = \cos(x^3) \), we will apply the chain rule: \[ \frac{du}{dx} = -\sin(x^3) \cdot \frac{d}{dx}(x^3) = -\sin(x^3) \cdot 3x^2 \] So, \[ \frac{du}{dx} = -3x^2 \sin(x^3) \] 4. **Find \( \frac{dv}{dx} \)**: To differentiate \( v = \sin^2(x^5) \), we again use the chain rule: \[ \frac{dv}{dx} = 2\sin(x^5) \cdot \frac{d}{dx}(\sin(x^5)) = 2\sin(x^5) \cdot \cos(x^5) \cdot \frac{d}{dx}(x^5) = 2\sin(x^5) \cdot \cos(x^5) \cdot 5x^4 \] So, \[ \frac{dv}{dx} = 10x^4 \sin(x^5) \cos(x^5) \] 5. **Substitute back into the product rule**: Now substituting \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) back into the product rule: \[ \frac{dy}{dx} = \cos(x^3) \cdot (10x^4 \sin(x^5) \cos(x^5)) + \sin^2(x^5) \cdot (-3x^2 \sin(x^3)) \] 6. **Simplify the expression**: \[ \frac{dy}{dx} = 10x^4 \cos(x^3) \sin(x^5) \cos(x^5) - 3x^2 \sin^2(x^5) \sin(x^3) \] ### Final Answer: \[ \frac{dy}{dx} = 10x^4 \cos(x^3) \sin(x^5) \cos(x^5) - 3x^2 \sin^2(x^5) \sin(x^3) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= sin (x^(2) +5) , then (dy)/(dx) =

If y=cos ^(-1) ((3sin x +4cos x)/( 5)),then (dy)/(dx) =

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)

If y=cos (sin x ),then (dy)/(dx) =

If y = (sin(3x+5)) then (dy)/(dx) =?

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If (cos x)^(y)=(sin y)^(x), then (dy)/(dx) equals-

If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=

If y=sin x+cos x then (dy)/(dx) =

If y=cos ^(-1) ((3cos x-4sin x )/( 5) ) ,then (dy)/(dx)=