Home
Class 12
MATHS
If y=sin ^(2) 3x tan ^(3) 2x,then (dy)/(...

` If y=sin ^(2) 3x tan ^(3) 2x,then (dy)/(dx) =`

A

` sin 3x tan ^(2) 2x (2sin 3x sec ^(2) 2x +3cos 3x tan 3x) `

B

` 2sin 3x tan ^(2) 2x (2sin 3x sec ^(2) 2x +3cos 3x tan 3x) `

C

` 3sin 3x tan ^(2) 2x (2sin 3x sec ^(2) 2x +3cos 3x tan 3x) `

D

` 6sin 3x tan ^(2) 2x (2sin 3x sec ^(2) 2x +3cos 3x tan 3x) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin^2(3x) \tan^3(2x) \), we will use the product rule of differentiation, which states that if \( y = u \cdot v \), then \( \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \). ### Step-by-Step Solution: 1. **Identify the functions**: Let \( u = \sin^2(3x) \) and \( v = \tan^3(2x) \). 2. **Differentiate \( u \)**: To differentiate \( u = \sin^2(3x) \), we will use the chain rule. \[ \frac{du}{dx} = 2 \sin(3x) \cdot \cos(3x) \cdot \frac{d}{dx}(3x) = 2 \sin(3x) \cdot \cos(3x) \cdot 3 = 6 \sin(3x) \cos(3x) \] 3. **Differentiate \( v \)**: To differentiate \( v = \tan^3(2x) \), we will also use the chain rule. \[ \frac{dv}{dx} = 3 \tan^2(2x) \cdot \sec^2(2x) \cdot \frac{d}{dx}(2x) = 3 \tan^2(2x) \cdot \sec^2(2x) \cdot 2 = 6 \tan^2(2x) \sec^2(2x) \] 4. **Apply the product rule**: Now, we can apply the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting the values we found: \[ \frac{dy}{dx} = \sin^2(3x) \cdot (6 \tan^2(2x) \sec^2(2x)) + \tan^3(2x) \cdot (6 \sin(3x) \cos(3x)) \] 5. **Factor out common terms**: We can factor out common terms from both parts: \[ \frac{dy}{dx} = 6 \sin(3x) \cdot \sin(3x) \tan^2(2x) \sec^2(2x) + 6 \tan^3(2x) \sin(3x) \cos(3x) \] \[ = 6 \sin(3x) \left( \sin^2(3x) \tan^2(2x) \sec^2(2x) + \tan^3(2x) \cos(3x) \right) \] ### Final Answer: \[ \frac{dy}{dx} = 6 \sin(3x) \left( \sin^2(3x) \tan^2(2x) \sec^2(2x) + \tan^3(2x) \cos(3x) \right) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sin ^(-1) (4x^(3) -3x) ,then ( dy)/(dx) =

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If y = sin^(-1) (3x -4x^(3)) " then " (dy)/(dx) = ?

If y=cos (x^(3)) sin ^(2) (x^(5)),then (dy)/(dx) =

If x=y tan((x)/(2)), then (dy)/(dx)=

If y= (tan x )^(sin x ) ,then (dy)/(dx)=

If y=sin^(3)2x*cos^(2)3x then (dy)/(dx)=

If y =tan (2x^(@) ) -sin (3x^(@) ),then (dy)/(dx) =