Home
Class 12
MATHS
Ify= (sin ^(2) x )/( 1+cos^(2) x) ,then ...

`Ify= (sin ^(2) x )/( 1+cos^(2) x) ,then (dy)/(dx) =`

A

` (-sin 2x )/( (1+ cos ^(2)x) ^(2))`

B

` (sin 2x ) /((1+cos ^(2)x) ^(2) )`

C

` (-2sin 2x )/( (1+cos ^(2)x))`

D

` (2sin 2x)/( (1+cos ^(2) x) ^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{\sin^2 x}{1 + \cos^2 x} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form \( y = \frac{f(x)}{g(x)} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] ### Step-by-step solution: 1. **Identify \( f(x) \) and \( g(x) \)**: - Let \( f(x) = \sin^2 x \) - Let \( g(x) = 1 + \cos^2 x \) 2. **Differentiate \( f(x) \)**: - Using the chain rule, \( f'(x) = 2 \sin x \cdot \cos x \) (since the derivative of \( \sin^2 x \) is \( 2 \sin x \cdot \cos x \)) 3. **Differentiate \( g(x) \)**: - \( g'(x) = 0 + 2 \cos x \cdot (-\sin x) = -2 \cos x \sin x \) (the derivative of \( \cos^2 x \) is \( -2 \cos x \sin x \)) 4. **Apply the quotient rule**: - Now substitute \( f(x) \), \( g(x) \), \( f'(x) \), and \( g'(x) \) into the quotient rule formula: \[ \frac{dy}{dx} = \frac{(2 \sin x \cos x)(1 + \cos^2 x) - (\sin^2 x)(-2 \cos x \sin x)}{(1 + \cos^2 x)^2} \] 5. **Simplify the numerator**: - The numerator becomes: \[ 2 \sin x \cos x (1 + \cos^2 x) + 2 \sin^3 x \cos x \] - Factor out \( 2 \sin x \cos x \): \[ = 2 \sin x \cos x \left(1 + \cos^2 x + \sin^2 x\right) \] 6. **Use the Pythagorean identity**: - Recall that \( \sin^2 x + \cos^2 x = 1 \): \[ 1 + \cos^2 x + \sin^2 x = 1 + 1 = 2 \] 7. **Final expression for \( \frac{dy}{dx} \)**: - Substitute back into the expression: \[ \frac{dy}{dx} = \frac{2 \sin x \cos x \cdot 2}{(1 + \cos^2 x)^2} = \frac{4 \sin x \cos x}{(1 + \cos^2 x)^2} \] 8. **Use the double angle identity**: - Recall that \( 2 \sin x \cos x = \sin(2x) \): \[ \frac{dy}{dx} = \frac{2 \sin(2x)}{(1 + \cos^2 x)^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{2 \sin(2x)}{(1 + \cos^2 x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If sin^(2) x + cos^(2) y = 1 , " then " (dy)/(dx) is equal to

If y=(sin^(-1)x)/(cos^(-1)x)," then "(dy)/(dx)=(k)/((cos^(-1)x)^(2)sqrt(1-x^(2)))," where "k=

If y=cos (x^(3)) sin ^(2) (x^(5)),then (dy)/(dx) =

If y=sin^(-1)(x/2)+cos^(-1)(x/2) then (dy)/(dx)=

If y=cot^(-1)((sin x)/(1+cos x)) then (dy)/(dx)=

If y=sin^(-1) (2 cos^(2)x-1),"then " dy/dx=

If y= sin ^(-1) ((cos x +sin x)/( sqrt2)) ,then (dy)/(dx)=

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)

If y=tan^(-1) ((sin x)/(1-cos x)),"then " dy/dx=

if y=tan^(-1)((cos x)/(1+sin x)) then (dy)/(dx)