Home
Class 12
MATHS
Ify=( sec x^(@) +tan x^(@))/( sec ^(@) -...

`Ify=( sec x^(@) +tan x^(@))/( sec ^(@) -tan x^(@) ) ,then (dy)/(dx) `

A

`(pi)/(180) tan ((pi)/( 4)+(x^(@) )/( 2))sec ^(2) ((pi)/(4) + (x^(@))/( 2))`

B

`(-pi)/(180) tan ((pi)/( 4)+(x^(@) )/( 2))sec ^(2) ((pi)/(4) + (x^(@))/( 2))`

C

`(-pi)/(360) tan ((pi)/( 4)+(x^(@) )/( 2))sec ^(2) ((pi)/(4) + (x^(@))/( 2))`

D

`(-pi)/(90) tan ((pi)/( 4)+(x^(@) )/( 2))sec ^(2) ((pi)/(4) + (x^(@))/( 2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \frac{\sec^2 x + \tan^2 x}{\sec^2 x - \tan^2 x} \] we can follow these steps: ### Step 1: Simplify the Function First, we multiply and divide the numerator and denominator by \( \sec x + \tan x \): \[ y = \frac{(\sec^2 x + \tan^2 x)(\sec x + \tan x)}{(\sec^2 x - \tan^2 x)(\sec x + \tan x)} \] ### Step 2: Simplify the Denominator Using the identity \( \sec^2 x - \tan^2 x = 1 \), we can simplify the denominator: \[ y = \frac{(\sec^2 x + \tan^2 x)(\sec x + \tan x)}{1 \cdot (\sec x + \tan x)} = \sec^2 x + \tan^2 x \] ### Step 3: Differentiate the Function Now we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx}(\sec^2 x + \tan^2 x) \] Using the derivatives \( \frac{d}{dx}(\sec^2 x) = 2 \sec^2 x \tan x \) and \( \frac{d}{dx}(\tan^2 x) = 2 \tan x \sec^2 x \): \[ \frac{dy}{dx} = 2 \sec^2 x \tan x + 2 \tan x \sec^2 x = 2 \tan x \sec^2 x + 2 \tan x \sec^2 x = 4 \tan x \sec^2 x \] ### Step 4: Final Result Thus, the derivative is: \[ \frac{dy}{dx} = 4 \tan x \sec^2 x \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= sec ( tan sqrt x ) ,then (dy)/(dx) =

If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

If y=log(sec x+tan x), then (dy)/(dx)=

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

if y=sec(tan^(-1)x)then(dy)/(dx) is

(dy)/(dx)+y sec x=tan x

If y=sec(tan^(-1)x) , then (tan^(-1)x) , then (dy)/(dx)" at "x=1 is equal to

sec^(2)x tany dx + sec^(2)y tan x dy = dy =0