Home
Class 12
MATHS
If y= e^(log (log x )) ,then (dy)/(dx) ...

If y= ` e^(log (log x )) ,then (dy)/(dx) ` =

A

` (1)/(x) `

B

` (1)/(logx ) `

C

` (1)/( xlogx ) `

D

` (x)/( log x ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{\log(\log x)} \), we can follow these steps: ### Step 1: Simplify the Expression Using the property of logarithms, we can rewrite the expression: \[ y = e^{\log(\log x)} = \log x^{\log e} \] Since \( \log e = 1 \), we have: \[ y = \log x \] ### Step 2: Differentiate the Function Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\log x) \] The derivative of \( \log x \) is: \[ \frac{dy}{dx} = \frac{1}{x} \] ### Final Answer Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{x} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log (log ( log x)) ,then (dy)/(dx)

If y = e^(log (log x ))log3 x,then (dy)/(dx)

If y=x^(log(log x)); then (dy)/(dx) is

If y =log (log x) then (dy)/(dx) =

If y = a ^(log ( 1+log x ) ) ,then ( dy)/(dX)

If y = e^(log x ) , then ( dy)/(dx)

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=(log x)^(x) then (dy)/(dx) =

If y = log (cos e^(x)), then (dy)/(dx) is:

If y = log ( cos e ^(x)), then (dy)/(dx)=