Home
Class 12
MATHS
If y = e^(x+2log x ),then (dy)/(dx)=...

If ` y = e^(x+2log x ),then (dy)/(dx)=`

A

` x(x^(2) +2) e^(x) `

B

` x(x^(2) +2) e^(2x) `

C

` x(x+2) e^(x) `

D

` x( x+2) e^(2x) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{x + 2 \log x} \), we will use the chain rule of differentiation. Here are the steps to solve the problem: ### Step 1: Identify the function and its components We have: \[ y = e^{x + 2 \log x} \] Let \( f(x) = x + 2 \log x \). Thus, we can rewrite \( y \) as: \[ y = e^{f(x)} \] ### Step 2: Differentiate using the chain rule The derivative of \( y \) with respect to \( x \) using the chain rule is given by: \[ \frac{dy}{dx} = e^{f(x)} \cdot \frac{df}{dx} \] ### Step 3: Differentiate \( f(x) \) Now, we need to find \( \frac{df}{dx} \): \[ f(x) = x + 2 \log x \] Differentiating \( f(x) \): \[ \frac{df}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}(2 \log x) \] The derivative of \( x \) is \( 1 \), and the derivative of \( 2 \log x \) is: \[ \frac{d}{dx}(2 \log x) = 2 \cdot \frac{1}{x} = \frac{2}{x} \] Thus, \[ \frac{df}{dx} = 1 + \frac{2}{x} \] ### Step 4: Substitute back into the derivative of \( y \) Now substituting \( f(x) \) and \( \frac{df}{dx} \) back into the derivative of \( y \): \[ \frac{dy}{dx} = e^{f(x)} \cdot \left(1 + \frac{2}{x}\right) \] Substituting \( f(x) = x + 2 \log x \): \[ \frac{dy}{dx} = e^{x + 2 \log x} \cdot \left(1 + \frac{2}{x}\right) \] ### Step 5: Simplify the expression We can simplify \( e^{x + 2 \log x} \): Using the property of logarithms, \( 2 \log x = \log x^2 \), we have: \[ e^{x + 2 \log x} = e^{x} \cdot e^{\log x^2} = e^{x} \cdot x^2 \] Thus: \[ \frac{dy}{dx} = e^{x} \cdot x^2 \cdot \left(1 + \frac{2}{x}\right) \] Now simplifying \( 1 + \frac{2}{x} \): \[ 1 + \frac{2}{x} = \frac{x + 2}{x} \] So we have: \[ \frac{dy}{dx} = e^{x} \cdot x^2 \cdot \frac{x + 2}{x} = e^{x} \cdot \frac{x^2(x + 2)}{x} = e^{x} \cdot (x + 2) \cdot x \] ### Final Answer Thus, the final answer is: \[ \frac{dy}{dx} = e^{x} \cdot (x + 2) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y = e^(log x ) , then ( dy)/(dx)

If y= e^(log (log x )) ,then (dy)/(dx) =

if y=e^(3log x)th en(dy)/(dx)

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=e^(x+3 log x) , then dy/dx=?

If y=e^(log_(e)x)," then "(dy)/(dx)=

If y=log (log ( log x)) ,then (dy)/(dx)

If y=e^(3x) sin ^(2)x log x ,then (dy)/(dx)=

If y = e^(log (log x ))log3 x,then (dy)/(dx)

If e^(x-y) =log ((x)/(y)),then (dy)/(dx) =