Home
Class 12
MATHS
If y= e^(x^(5) e^(x) ) ,then (dy)/(dx) ...

If ` y= e^(x^(5) e^(x) ) ,then (dy)/(dx) =`

A

` (5x^(4) +1) e^(x^(5) +x) `

B

` (5x^(4)- 1) e^(x^(5) + x) `

C

` (5x^(4) +x) e^(x^(5)+x)`

D

` (5x^(4) -x) e^(x^(5)+x) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{x^5 e^x} \), we will use the chain rule and the product rule of differentiation. Here's the step-by-step solution: ### Step 1: Identify the outer and inner functions We have: \[ y = e^{u} \quad \text{where} \quad u = x^5 e^x \] ### Step 2: Differentiate the outer function Using the chain rule, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = e^u \cdot \frac{du}{dx} \] ### Step 3: Differentiate the inner function \( u \) Now we need to differentiate \( u = x^5 e^x \). We will use the product rule here: \[ \frac{du}{dx} = \frac{d}{dx}(x^5) \cdot e^x + x^5 \cdot \frac{d}{dx}(e^x) \] Calculating each part: - The derivative of \( x^5 \) is \( 5x^4 \). - The derivative of \( e^x \) is \( e^x \). So we have: \[ \frac{du}{dx} = 5x^4 e^x + x^5 e^x \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) back into the derivative Now substituting back into the derivative of \( y \): \[ \frac{dy}{dx} = e^{x^5 e^x} \cdot (5x^4 e^x + x^5 e^x) \] ### Step 5: Factor out common terms We can factor out \( e^x \) from the expression: \[ \frac{dy}{dx} = e^{x^5 e^x} \cdot e^x (5x^4 + x^5) \] This simplifies to: \[ \frac{dy}{dx} = e^{x^5 e^x + x} (5x^4 + x^5) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = e^{x^5 e^x + x} (5x^4 + x^5) \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= e^(5x^(2) -x+3) ,then (dy)/(dx) =

If y= x^(e^(x)) ,then (dy)/(dx) =

If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =

If y=e^(x)+x then (dy)/(dx)=

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

if y^(x)=e^(y-x) then (dy)/(dx)

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=