Home
Class 12
MATHS
If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2...

If `y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =`

A

` ( 4)/( (e^(2x) +e^(-2x) ) ) `

B

` ( -4)/( (e^(2x) +e^(-2x) )^2 `

C

` ( 8 )/( (e^(2x) +e^(-2x) )^(2) ) `

D

`(- 8 )/( (e^(2x) +e^(-2x) )^(2) ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} \), we will use the quotient rule for differentiation. The quotient rule states that if you have a function \( y = \frac{u}{v} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = e^{2x} - e^{-2x} \) and \( v = e^{2x} + e^{-2x} \). ### Step 1: Identify \( u \) and \( v \) Let: \[ u = e^{2x} - e^{-2x} \] \[ v = e^{2x} + e^{-2x} \] ### Step 2: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Now we differentiate \( u \) and \( v \): 1. Differentiate \( u \): \[ \frac{du}{dx} = \frac{d}{dx}(e^{2x}) - \frac{d}{dx}(e^{-2x}) = 2e^{2x} + 2e^{-2x} \] 2. Differentiate \( v \): \[ \frac{dv}{dx} = \frac{d}{dx}(e^{2x}) + \frac{d}{dx}(e^{-2x}) = 2e^{2x} - 2e^{-2x} \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = \frac{(e^{2x} + e^{-2x})(2e^{2x} + 2e^{-2x}) - (e^{2x} - e^{-2x})(2e^{2x} - 2e^{-2x})}{(e^{2x} + e^{-2x})^2} \] ### Step 4: Simplify the Numerator Now we simplify the numerator: 1. Expand the first term: \[ (e^{2x} + e^{-2x})(2e^{2x} + 2e^{-2x}) = 2e^{4x} + 2 + 2e^{0} + 2e^{-4x} \] 2. Expand the second term: \[ (e^{2x} - e^{-2x})(2e^{2x} - 2e^{-2x}) = 2e^{4x} - 2e^{0} - 2e^{-4x} + 2 \] Now combine these: \[ \text{Numerator} = (2e^{4x} + 2 + 2e^{0} + 2e^{-4x}) - (2e^{4x} - 2 + 2e^{-4x}) = 4 \] ### Step 5: Write the Final Derivative Thus, we have: \[ \frac{dy}{dx} = \frac{4}{(e^{2x} + e^{-2x})^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{4}{(e^{2x} + e^{-2x})^2} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=(e^(3)-e^(2x))/(e^(3)+e^(2x))," then: "(dy)/(dx)=

If e^(2x) +e^(2y) =e^(2( x+y)),then (dy)/(dx)=

int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

int (e^(2x) +e^(-2x))/(e^(x)) dx

If y=e^(x).e^(2x).e^(3x)…..e^(nx) , then (dy)/(dx) =

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=