Home
Class 12
MATHS
If y= log (secx+tan x ) ,then (dy)/(dx)...

If ` y= log (secx+tan x ) ,then (dy)/(dx) `

A

` secx `

B

`secx tan x `

C

` tanx`

D

` cos x `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log(\sec x + \tan x) \), we can follow these steps: ### Step 1: Identify the function We have: \[ y = \log(\sec x + \tan x) \] ### Step 2: Apply the chain rule for differentiation The derivative of \( \log(f(x)) \) is given by: \[ \frac{dy}{dx} = \frac{1}{f(x)} \cdot f'(x) \] where \( f(x) = \sec x + \tan x \). ### Step 3: Differentiate \( f(x) \) Now, we need to find \( f'(x) \): \[ f(x) = \sec x + \tan x \] The derivatives of \( \sec x \) and \( \tan x \) are: \[ \frac{d}{dx}(\sec x) = \sec x \tan x \] \[ \frac{d}{dx}(\tan x) = \sec^2 x \] Thus, \[ f'(x) = \sec x \tan x + \sec^2 x \] ### Step 4: Substitute \( f(x) \) and \( f'(x) \) into the derivative formula Now substituting back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{\sec x + \tan x} \cdot (\sec x \tan x + \sec^2 x) \] ### Step 5: Simplify the expression We can factor out \( \sec x \) from the numerator: \[ \frac{dy}{dx} = \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} \] Now, notice that \( \sec x + \tan x \) in the numerator and denominator can be cancelled: \[ \frac{dy}{dx} = \sec x \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \sec x \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log(sec x+tan x), then (dy)/(dx)=

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=log (log ( log x)) ,then (dy)/(dx)

Consider the following statements I. If y=ln(secx+tanx) . then (dy)/(dx)=secx II. If y=ln("cosec"x-cotx) . then (dy)/(dx)="cosec"x Which of the above statements is/are correct ?

Consider the following statements: 1. If y=ln(secx+tanx), then (dy)/(dx)=secx. 2. If y=ln("cosecx-cotx) , then (dy)/(dx)="cosec x". Which of the above is/are correct?

If y=log sqrt(tan x), write (dy)/(dx)

If y= (sin x )^(x)+ log x + (logx) ^(tan x) +x^(a) ,then (dy)/(dx) =

If y =log (log x) then (dy)/(dx) =

If y=log[tan(pi/4 +x/2)]) ,then (dy)/(dx) is

If log (x+y) =log (xy ) +a, then (dy)/(dx) =