Home
Class 12
MATHS
If y=log (cosec x -cotx) ,then (dy)/(dx...

If ` y=log (cosec x -cotx) ,then (dy)/(dx) `

A

` -cosec x `

B

` cosec x `

C

` -(cosec x -cotx ) `

D

` cosec x -cotx `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \log(\csc x - \cot x) \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Differentiate using the chain rule We start by applying the chain rule for differentiation. The derivative of \( \log(f(x)) \) is given by: \[ \frac{dy}{dx} = \frac{1}{f(x)} \cdot f'(x) \] In our case, \( f(x) = \csc x - \cot x \). ### Step 2: Find \( f'(x) \) Now, we need to differentiate \( f(x) = \csc x - \cot x \). The derivatives are: - The derivative of \( \csc x \) is \( -\csc x \cot x \). - The derivative of \( \cot x \) is \( -\csc^2 x \). Thus, we have: \[ f'(x) = -\csc x \cot x - (-\csc^2 x) = -\csc x \cot x + \csc^2 x \] ### Step 3: Substitute \( f(x) \) and \( f'(x) \) into the derivative formula Now we substitute \( f(x) \) and \( f'(x) \) back into our derivative formula: \[ \frac{dy}{dx} = \frac{1}{\csc x - \cot x} \cdot (-\csc x \cot x + \csc^2 x) \] ### Step 4: Simplify the expression We can factor out \( \csc x \): \[ \frac{dy}{dx} = \frac{-\csc x (\cot x - \csc x)}{\csc x - \cot x} \] Now, notice that \( \cot x - \csc x = -(\csc x - \cot x) \). Thus, we can rewrite the expression: \[ \frac{dy}{dx} = \frac{-\csc x (-(\csc x - \cot x))}{\csc x - \cot x} \] This simplifies to: \[ \frac{dy}{dx} = \csc x \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = -\csc x \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

Consider the following statements: 1. If y=ln(secx+tanx), then (dy)/(dx)=secx. 2. If y=ln("cosecx-cotx) , then (dy)/(dx)="cosec x". Which of the above is/are correct?

If y=log (log ( log x)) ,then (dy)/(dx)

Consider the following statements I. If y=ln(secx+tanx) . then (dy)/(dx)=secx II. If y=ln("cosec"x-cotx) . then (dy)/(dx)="cosec"x Which of the above statements is/are correct ?

If y= e^(cosec _x) ,then (dy)/(dx) =

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=(cosec x-cot x)/(cosec x+cot x) then (dy)/(dx) is

If y= log sece^(x^(2)) ,then *(dy)/(dx)

If y=( log x )^(x) -x^(log x) ,then (dy)/(dx)=

If y= (log x) ^(logx) ,then (dy)/(dx)=