Home
Class 12
MATHS
If y=log (sin x +cos x ) ,then (dy)/(dx...

If ` y=log (sin x +cos x ) ,then (dy)/(dx) `

A

` (xsin x)/( xsin x+cos x ) `

B

` (-xsin x)/( xsin x+cos x ) `

C

` (xcos x)/( xsin x+cos x ) `

D

` (-xcos x)/( xsin x+cos x ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \log(\sin x + \cos x) \), we will follow these steps: ### Step 1: Differentiate using the chain rule The derivative of \( y = \log(f(x)) \) is given by: \[ \frac{dy}{dx} = \frac{1}{f(x)} \cdot \frac{df}{dx} \] where \( f(x) = \sin x + \cos x \). ### Step 2: Find \( f'(x) \) Now we need to differentiate \( f(x) = \sin x + \cos x \): \[ f'(x) = \frac{d}{dx}(\sin x) + \frac{d}{dx}(\cos x) = \cos x - \sin x \] ### Step 3: Substitute \( f(x) \) and \( f'(x) \) into the derivative formula Now substituting \( f(x) \) and \( f'(x) \) into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{\sin x + \cos x} \cdot (\cos x - \sin x) \] ### Step 4: Simplify the expression Thus, we can write: \[ \frac{dy}{dx} = \frac{\cos x - \sin x}{\sin x + \cos x} \] ### Step 5: Further simplification (if necessary) We can also express \( \cos x - \sin x \) using trigonometric identities, but for the purpose of this problem, the expression is already in a simplified form. ### Final Answer The derivative is: \[ \frac{dy}{dx} = \frac{\cos x - \sin x}{\sin x + \cos x} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= ( log sin x) (logx ) ,then (dy)/(dx)

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)

If y=log (xcos x -sin x ),then (dy)/(dx)

If y=sin x+cos x then (dy)/(dx) =

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

If y = log ( cos e ^(x)), then (dy)/(dx)=

if y=(sin x)^(cos x). Then (dy)/(dx)=

If y = log (cos e^(x)), then (dy)/(dx) is:

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=