A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
NIKITA PUBLICATION-DIFFERENTIATION -MCQ
- If y=log (cosec x -cotx) ,then (dy)/(dx)
Text Solution
|
- If y=log (sin x +cos x ) ,then (dy)/(dx)
Text Solution
|
- If y=log (xcos x -sin x ),then (dy)/(dx)
Text Solution
|
- y= log (xtan x + sec x ),then (dy)/(dx) =
Text Solution
|
- If y= log sece^(x^(2)) ,then *(dy)/(dx)
Text Solution
|
- If y=log (e^(x) ) (log x ),then (dy)/(dx)
Text Solution
|
- If y=log (log ( log x)) ,then (dy)/(dx)
Text Solution
|
- If y= log 5 (log 7x),then (dy)/(dx) =
Text Solution
|
- f(x) =log x (log x) ,then f'(x) at x =eis
Text Solution
|
- If y =log x^(x) ,then (dy)/(dx) =
Text Solution
|
- If y= ( log sin x) (logx ) ,then (dy)/(dx)
Text Solution
|
- y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =
Text Solution
|
- If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to
Text Solution
|
- If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)
Text Solution
|
- If y=log((1-cos x)/(1+cos x)) thenn dy/dx=
Text Solution
|
- If y=logsqrt((1-cos((3x)/(2)))/(1+cos ((3x)/(2)))),"then "dy/dx=
Text Solution
|
- y=log[sin^(3)x.cos^(4)x.(x^(2)-1)^(5)]
Text Solution
|
- If y=log((e^(x))/(x^(2))),"then "dy/dx=
Text Solution
|
- y=log[(x+sqrt(x^2+25))/(sqrt(x^2+25)-x)],f i n d(dy)/(dx)
Text Solution
|
- If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=
Text Solution
|