Home
Class 12
MATHS
If y= log sece^(x^(2)) ,then *(dy)/(dx)...

If ` y= log sece^(x^(2)) ,then *(dy)/(dx) `

A

` xe^(x^(2)) tan e^(x^(2))`

B

` 2 xe^(x^(2)) tan e^(x^(2))`

C

` - xe^(x^(2)) tan e^(x^(2))`

D

` - 2xe^(x^(2)) tan e^(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log(\sec(e^{x^2})) \), we will use the chain rule and the properties of logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate the logarithmic function Using the chain rule, the derivative of \( y = \log(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = \sec(e^{x^2}) \). ### Step 2: Find \( \frac{du}{dx} \) Now we need to differentiate \( u = \sec(e^{x^2}) \). The derivative of \( \sec(v) \) is \( \sec(v) \tan(v) \cdot \frac{dv}{dx} \), where \( v = e^{x^2} \). ### Step 3: Differentiate \( v = e^{x^2} \) Next, we find \( \frac{dv}{dx} \) where \( v = e^{x^2} \): \[ \frac{dv}{dx} = e^{x^2} \cdot \frac{d}{dx}(x^2) = e^{x^2} \cdot (2x) \] ### Step 4: Combine the derivatives Now substituting back into the derivative of \( u \): \[ \frac{du}{dx} = \sec(e^{x^2}) \tan(e^{x^2}) \cdot \frac{dv}{dx} = \sec(e^{x^2}) \tan(e^{x^2}) \cdot (2x e^{x^2}) \] ### Step 5: Substitute \( \frac{du}{dx} \) back into \( \frac{dy}{dx} \) Now we can substitute \( \frac{du}{dx} \) back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sec(e^{x^2})} \cdot \left( \sec(e^{x^2}) \tan(e^{x^2}) \cdot (2x e^{x^2}) \right) \] ### Step 6: Simplify the expression The \( \sec(e^{x^2}) \) terms cancel out: \[ \frac{dy}{dx} = \tan(e^{x^2}) \cdot (2x e^{x^2}) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 2x e^{x^2} \tan(e^{x^2}) \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

If y =log x^(x) ,then (dy)/(dx) =

If y=log((e^(x))/(x^(2)))," then "(dy)/(dx)=

If y=log(e^(x^2)) , then dy/dx=?

If y=log (log ( log x)) ,then (dy)/(dx)

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=(log x)^(x) then (dy)/(dx) =

If y=( log x )^(x) -x^(log x) ,then (dy)/(dx)=

If y=log((e^(x))/(x^(2))),"then "dy/dx=

If y=log_2 (log_2 x) , then (dy)/(dx) =