Home
Class 12
MATHS
If y= log 5 (log 7x),then (dy)/(dx) =...

If ` y= log _5 (log _7x),then (dy)/(dx) =`

A

` (1)/( xlog 5 *log _7x ) `

B

` (1)/( xlog 5 *logx ) `

C

` (1)/( xlog 7 *log_5x ) `

D

` (1)/( xlog 7 *logx ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \log_5(\log_7 x)\), we will use the change of base formula for logarithms and then differentiate. Here’s the step-by-step solution: ### Step 1: Change of Base We start with the function: \[ y = \log_5(\log_7 x) \] Using the change of base formula, we can express this in terms of natural logarithms: \[ y = \frac{\log(\log_7 x)}{\log 5} \] ### Step 2: Change of Base for \(\log_7 x\) Next, we apply the change of base formula again to \(\log_7 x\): \[ \log_7 x = \frac{\log x}{\log 7} \] Substituting this back into our expression for \(y\): \[ y = \frac{\log\left(\frac{\log x}{\log 7}\right)}{\log 5} \] ### Step 3: Simplify the Logarithm Using the property of logarithms \(\log(a/b) = \log a - \log b\): \[ y = \frac{\log(\log x) - \log(\log 7)}{\log 5} \] ### Step 4: Differentiate \(y\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{1}{\log 5} \cdot \frac{d}{dx}(\log(\log x) - \log(\log 7)) \] Since \(\log(\log 7)\) is a constant, its derivative is 0: \[ \frac{dy}{dx} = \frac{1}{\log 5} \cdot \frac{d}{dx}(\log(\log x)) \] ### Step 5: Differentiate \(\log(\log x)\) Using the chain rule: \[ \frac{d}{dx}(\log(\log x)) = \frac{1}{\log x} \cdot \frac{d}{dx}(\log x) = \frac{1}{\log x} \cdot \frac{1}{x} \] Thus, \[ \frac{dy}{dx} = \frac{1}{\log 5} \cdot \frac{1}{x \log x} \] ### Final Answer Putting it all together, we have: \[ \frac{dy}{dx} = \frac{1}{x \log 5 \log x} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log (log ( log x)) ,then (dy)/(dx)

If y =log (log x) then (dy)/(dx) =

If y= e^(log (log x )) ,then (dy)/(dx) =

If y= (log x) ^(logx) ,then (dy)/(dx)=

If y=5^(log x) then (dy)/(dx)=

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y =log x^(x) ,then (dy)/(dx) =