Home
Class 12
MATHS
If y =log x^(x) ,then (dy)/(dx) =...

If ` y =log x^(x) ,then (dy)/(dx) =`

A

` log (ex) `

B

` x^(x) (1+log x ) `

C

` log ((e)/(x))`

D

` -log ( (e)/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \log(x^x) \) and find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Simplify the expression for \( y \) Using the logarithmic identity \( \log(a^b) = b \cdot \log(a) \), we can rewrite \( y \): \[ y = \log(x^x) = x \cdot \log(x) \] **Hint:** Remember that logarithmic properties allow you to simplify expressions involving exponents. ### Step 2: Differentiate \( y \) with respect to \( x \) Now we need to differentiate \( y = x \cdot \log(x) \). This requires the product rule, which states that if \( u = f(x) \) and \( v = g(x) \), then: \[ \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Here, let \( u = x \) and \( v = \log(x) \). - Differentiate \( u \): \[ \frac{du}{dx} = 1 \] - Differentiate \( v \): \[ \frac{dv}{dx} = \frac{1}{x} \] Now applying the product rule: \[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \] Substituting \( u \) and \( v \): \[ \frac{dy}{dx} = x \cdot \frac{1}{x} + \log(x) \cdot 1 \] ### Step 3: Simplify the expression Now simplify the expression: \[ \frac{dy}{dx} = 1 + \log(x) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 1 + \log(x) \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log x^(3), then (dy)/(dx)=

If y =log (log x) then (dy)/(dx) =

If y = e^(log x ) , then ( dy)/(dx)

If y = x^(log x) , then (dy)/(dx) equals

If y = e^(x+2log x ),then (dy)/(dx)=

If log (x+y) =log (xy ) +a, then (dy)/(dx) =