Home
Class 12
MATHS
If y= ( log sin x) (logx ) ,then (dy)/(...

If ` y= ( log sin x) (logx ) ,then (dy)/(dx) `

A

` (log (sin x))/( x) +(log x )(cotx) `

B

` (log (sin x))/( x) -(log x )(cotx) `

C

` (log (sin x))/( x)+(log x )(tan x) `

D

` (log (sin x))/( x)-(log x )(tan x) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\log(\sin x)) (\log x) \), we will use the product rule of differentiation. The product rule states that if you have a function that is the product of two functions, say \( u \) and \( v \), then the derivative of their product is given by: \[ \frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-step Solution: 1. **Identify the functions**: Let \( u = \log(\sin x) \) and \( v = \log x \). 2. **Differentiate \( u \)**: To find \( \frac{du}{dx} \): \[ u = \log(\sin x) \] Using the chain rule, we have: \[ \frac{du}{dx} = \frac{1}{\sin x} \cdot \frac{d(\sin x)}{dx} = \frac{1}{\sin x} \cdot \cos x = \cot x \] 3. **Differentiate \( v \)**: To find \( \frac{dv}{dx} \): \[ v = \log x \] The derivative is: \[ \frac{dv}{dx} = \frac{1}{x} \] 4. **Apply the product rule**: Now, apply the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting the values we found: \[ \frac{dy}{dx} = \log(\sin x) \cdot \frac{1}{x} + \log x \cdot \cot x \] 5. **Final result**: Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\log(\sin x)}{x} + \log x \cdot \cot x \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y= (log x) ^(logx) ,then (dy)/(dx)=

If y=log (sin x +cos x ) ,then (dy)/(dx)

If y= (sin x)^(logx ),then (dy)/(dx)=

If y=x^(logx) ,then (dy)/(dx)=

If y = (sin x)^(log x) " then " (dy)/(dx) = ?

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=log (log ( log x)) ,then (dy)/(dx)

If , y=(logx )^(sin x ) ,then (dy)/(dx) =

If y= sin ^((2)/(5))(logx ),then (dy)/(dx) =

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)