Home
Class 12
MATHS
y=log ((1-sin x )/(1+sin x )),then (dy)/...

` y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =`

A

` -2sec x `

B

` 2sec x `

C

`- 2tan x `

D

` 2tan x `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \log\left(\frac{1 - \sin x}{1 + \sin x}\right) \), we will follow these steps: ### Step 1: Apply the Chain Rule We start by using the chain rule for the logarithmic function. The derivative of \( \log(u) \) is given by \( \frac{1}{u} \cdot \frac{du}{dx} \). Here, \( u = \frac{1 - \sin x}{1 + \sin x} \). \[ \frac{dy}{dx} = \frac{1}{\frac{1 - \sin x}{1 + \sin x}} \cdot \frac{d}{dx}\left(\frac{1 - \sin x}{1 + \sin x}\right) \] ### Step 2: Differentiate the Quotient Next, we need to differentiate \( u = \frac{1 - \sin x}{1 + \sin x} \) using the quotient rule. The quotient rule states: \[ \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \] Here, \( f(x) = 1 - \sin x \) and \( g(x) = 1 + \sin x \). - \( f'(x) = -\cos x \) - \( g'(x) = \cos x \) Now applying the quotient rule: \[ \frac{d}{dx}\left(\frac{1 - \sin x}{1 + \sin x}\right) = \frac{(1 + \sin x)(-\cos x) - (1 - \sin x)(\cos x)}{(1 + \sin x)^2} \] ### Step 3: Simplify the Numerator Now let's simplify the numerator: \[ = \frac{-\cos x(1 + \sin x) - \cos x(1 - \sin x)}{(1 + \sin x)^2} \] Combining the terms in the numerator: \[ = \frac{-\cos x - \sin x \cos x - \cos x + \sin x \cos x}{(1 + \sin x)^2} \] The \( \sin x \cos x \) terms cancel out: \[ = \frac{-2\cos x}{(1 + \sin x)^2} \] ### Step 4: Substitute Back into the Derivative Now substitute this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1 + \sin x}{1 - \sin x} \cdot \frac{-2\cos x}{(1 + \sin x)^2} \] ### Step 5: Simplify the Expression Now we can simplify: \[ \frac{dy}{dx} = \frac{-2\cos x}{(1 - \sin x)(1 + \sin x)} = \frac{-2\cos x}{1 - \sin^2 x} = \frac{-2\cos x}{\cos^2 x} \] ### Step 6: Final Simplification This simplifies to: \[ \frac{dy}{dx} = -2 \tan x \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -2 \tan x \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =

If y=cot^(-1)((sin x)/(1+cos x)) then (dy)/(dx)=

If y=log (xcos x -sin x ),then (dy)/(dx)

If y=log (sin x +cos x ) ,then (dy)/(dx)

If y=tan^(-1)((1+cos x)/(sin x)),then(dy)/(dx)=

if y=tan^(-1)((cos x)/(1+sin x)) then (dy)/(dx)

If y= ( log sin x) (logx ) ,then (dy)/(dx)

y = tan ^ (- 1) ((cos x) / (1 + sin x)) then (dy) / (dx)