A
B
C
D
Text Solution
AI Generated Solution
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
NIKITA PUBLICATION-DIFFERENTIATION -MCQ
- If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to
Text Solution
|
- If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)
Text Solution
|
- If y=log((1-cos x)/(1+cos x)) thenn dy/dx=
Text Solution
|
- If y=logsqrt((1-cos((3x)/(2)))/(1+cos ((3x)/(2)))),"then "dy/dx=
Text Solution
|
- y=log[sin^(3)x.cos^(4)x.(x^(2)-1)^(5)]
Text Solution
|
- If y=log((e^(x))/(x^(2))),"then "dy/dx=
Text Solution
|
- y=log[(x+sqrt(x^2+25))/(sqrt(x^2+25)-x)],f i n d(dy)/(dx)
Text Solution
|
- If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=
Text Solution
|
- y=log[e^(3x)*((x-4)/(x+3))^(2//3)], find (dy)/(dx)
Text Solution
|
- If y=log (e^(4x)((x-5)/(x+4))^(5/4))"then "dy/dx=
Text Solution
|
- y=log[a^(4x).((x-5)/(x+4))^((3)/(4))]
Text Solution
|
- If y=sin^(-1)(x^(2)-1)"then "dy/dx=
Text Solution
|
- If y=sin^(-1)(2^(x)),"then "dy/dx=
Text Solution
|
- If y=sin^(-1)(2^(x)),"then "dy/dx=
Text Solution
|
- If y=cos^(-1)(4sqrtx),"then "dy/dx=
Text Solution
|
- If y=cos^(-1)(sqrtcosx),"then "dy/dx=
Text Solution
|
- If y=cos^(-1) (log(2)x),"then "dy/dx=
Text Solution
|
- If y=tan^(-1) (3x^(2)+2),"then "dy/dx=
Text Solution
|
- At x=0," if " (d)/(dx) (tan^(-1) (a+bx))=1," then "a^(6)-b^(3)+1=
Text Solution
|
- If y=cot^(-1) ((1)/(sqrtx)),"then "dy/dx=
Text Solution
|