Home
Class 12
MATHS
If y=log((e^(x))/(x^(2))),"then "dy/dx=...

If `y=log((e^(x))/(x^(2))),"then "dy/dx=`

A

` (2-x)/( x) `

B

` (x-2)/( x) `

C

` (e-x)/( xe) `

D

` (x-e)/(ex) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \log\left(\frac{e^x}{x^2}\right) \), we can follow these steps: ### Step 1: Simplify the logarithmic expression Using the properties of logarithms, we can rewrite the expression: \[ y = \log\left(\frac{e^x}{x^2}\right) = \log(e^x) - \log(x^2) \] Using the property \( \log(a/b) = \log(a) - \log(b) \) and \( \log(a^b) = b \log(a) \), we can further simplify: \[ y = x - 2\log(x) \] ### Step 2: Differentiate the expression Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(x) - \frac{d}{dx}(2\log(x)) \] The derivative of \( x \) is \( 1 \), and the derivative of \( \log(x) \) is \( \frac{1}{x} \): \[ \frac{dy}{dx} = 1 - 2 \cdot \frac{1}{x} \] ### Step 3: Simplify the derivative Now we simplify the expression: \[ \frac{dy}{dx} = 1 - \frac{2}{x} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 1 - \frac{2}{x} \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=log((3+e^x)/(3-e^x)) , then dy/dx=?

If y= log sece^(x^(2)) ,then *(dy)/(dx)

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=log(e^(x^2)) , then dy/dx=?

If log((x)/(y))=x+y," then: "(dy)/(dx)=

If log(xy)x^(2)+y^(2)," then: "((dy)/(dx))((dx)/(dy))=

If y = log ( cos e ^(x)), then (dy)/(dx)=

If e^(x-y) =log ((x)/(y)),then (dy)/(dx) =

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y=e^(log_(e)x)," then "(dy)/(dx)=