Home
Class 12
MATHS
If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(...

If `y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=`

A

` (2)/(sqrt(x^(2)+a^(2)))`

B

` (-2)/(sqrt(x^(2)+a^(2)))`

C

` (2x)/(sqrt(x^(2)+a^(2)))`

D

` (-2x)/(sqrt(x^(2)+a^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \log\left(\frac{x + \sqrt{x^2 + a^2}}{-x + \sqrt{x^2 + a^2}}\right) \), we will follow these steps: ### Step 1: Rewrite the Logarithm We can rewrite the expression inside the logarithm: \[ y = \log\left(\frac{x + \sqrt{x^2 + a^2}}{-x + \sqrt{x^2 + a^2}}\right) \] This can be expressed as: \[ y = \log\left(\frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2} - x}\right) \] ### Step 2: Rationalize the Denominator To simplify, we multiply the numerator and denominator by the conjugate of the denominator: \[ y = \log\left(\frac{(\sqrt{x^2 + a^2} + x)(\sqrt{x^2 + a^2} + x)}{(\sqrt{x^2 + a^2} - x)(\sqrt{x^2 + a^2} + x)}\right) \] The denominator simplifies to: \[ (\sqrt{x^2 + a^2})^2 - x^2 = a^2 \] So, we have: \[ y = \log\left(\frac{(\sqrt{x^2 + a^2} + x)^2}{a^2}\right) \] ### Step 3: Apply Logarithmic Properties Using the properties of logarithms: \[ y = \log\left((\sqrt{x^2 + a^2} + x)^2\right) - \log(a^2) \] This simplifies to: \[ y = 2\log(\sqrt{x^2 + a^2} + x) - 2\log(a) \] ### Step 4: Differentiate Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 2 \cdot \frac{1}{\sqrt{x^2 + a^2} + x} \cdot \frac{d}{dx}(\sqrt{x^2 + a^2} + x) \] The derivative of \( \sqrt{x^2 + a^2} \) is: \[ \frac{d}{dx}(\sqrt{x^2 + a^2}) = \frac{x}{\sqrt{x^2 + a^2}} \] Thus: \[ \frac{d}{dx}(\sqrt{x^2 + a^2} + x) = \frac{x}{\sqrt{x^2 + a^2}} + 1 \] Putting it all together: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{\sqrt{x^2 + a^2} + x} \cdot \left(\frac{x}{\sqrt{x^2 + a^2}} + 1\right) \] ### Step 5: Simplify This can be simplified further: \[ \frac{dy}{dx} = \frac{2\left(\frac{x + \sqrt{x^2 + a^2}}{\sqrt{x^2 + a^2}}\right)}{\sqrt{x^2 + a^2} + x} \] The \( \sqrt{x^2 + a^2} + x \) cancels out: \[ \frac{dy}{dx} = \frac{2}{\sqrt{x^2 + a^2}} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \frac{2}{\sqrt{x^2 + a^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2))) , then (dy)/(dx)=

If x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y^(2) )+cot ^(-1) sqrt(x^(2) +y^(2)),then (dy)/(dx)=

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=log(sqrt(x+sqrt(x^(2)+a^(2))))" then: "(dy)/(dx)=

If y =sqrt(a^(2) + sqrt( a^(2)+ x^(2)) ),then (dy)/(dx) =

If sqrt(a^(2)-x^(2))+sqrt(a^(2)-y^(2))=k(x-y) then (dy)/(dx)=

If y = log ((sqrt(1 + x^(2)) + x)/(sqrt(1 + x^(2)) -x)) " then " (dy)/(dx) = ?

x(dy)/(dx)=y+sqrt(x^(2)-y^(2))