Home
Class 12
MATHS
If y=sin^(-1)(x^(2)-1)"then "dy/dx=...

If `y=sin^(-1)(x^(2)-1)"then "dy/dx=`

A

` (2x) /(sqrt( 2-x^(2)))`

B

` (2) /(sqrt( 2-x^(2)))`

C

` (2x) /(sqrt( x^(2)-2))`

D

` (2) /(sqrt( x^(2)-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin^{-1}(x^2 - 1) \), we will use the chain rule and the derivative of the inverse sine function. ### Step-by-step Solution: 1. **Identify the function**: We have \( y = \sin^{-1}(u) \) where \( u = x^2 - 1 \). 2. **Differentiate using the chain rule**: The derivative of \( y = \sin^{-1}(u) \) is given by: \[ \frac{dy}{du} = \frac{1}{\sqrt{1 - u^2}} \] By the chain rule, we also need to multiply by \( \frac{du}{dx} \): \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] 3. **Calculate \( \frac{du}{dx} \)**: Since \( u = x^2 - 1 \), we differentiate: \[ \frac{du}{dx} = 2x \] 4. **Substitute \( u \) back into the derivative**: Now substituting \( u = x^2 - 1 \) into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (x^2 - 1)^2}} \cdot 2x \] 5. **Simplify the expression**: First, simplify \( 1 - (x^2 - 1)^2 \): \[ (x^2 - 1)^2 = x^4 - 2x^2 + 1 \] Therefore: \[ 1 - (x^2 - 1)^2 = 1 - (x^4 - 2x^2 + 1) = -x^4 + 2x^2 \] Thus: \[ \frac{dy}{dx} = \frac{2x}{\sqrt{-x^4 + 2x^2}} = \frac{2x}{\sqrt{2x^2 - x^4}} \] 6. **Factor out common terms**: We can factor out \( x^2 \) from the square root: \[ \sqrt{2x^2 - x^4} = \sqrt{x^2(2 - x^2)} = x\sqrt{2 - x^2} \] Therefore: \[ \frac{dy}{dx} = \frac{2x}{x\sqrt{2 - x^2}} = \frac{2}{\sqrt{2 - x^2}} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{2}{\sqrt{2 - x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)(2^(x)),"then "dy/dx=

If y=sin ^(-1) (2x^(2) -1) ,then (dy)/(dx)=

If y=sin^(-1) x+cos^(-1) x,"then "dy/dx=

If y=sin(2 cos^(-1)x),"then " dy/dx=

If y=sin^(-1) (2 cos^(2)x-1),"then " dy/dx=

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

y=sin ^(-1) (1-2x ^(2)),then (dy)/(dx)=

If y=cos^(-1) (sin x^(2)),"then " (dy)/(dx)=

If y=sin(2sin^(-1)x) then (dy)/(dx)=

if y=tan(sin^(-1)x) then (dy)/(dx)