A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
NIKITA PUBLICATION-DIFFERENTIATION -MCQ
- If y=sin^(-1)(2^(x)),"then "dy/dx=
Text Solution
|
- If y=sin^(-1)(2^(x)),"then "dy/dx=
Text Solution
|
- If y=cos^(-1)(4sqrtx),"then "dy/dx=
Text Solution
|
- If y=cos^(-1)(sqrtcosx),"then "dy/dx=
Text Solution
|
- If y=cos^(-1) (log(2)x),"then "dy/dx=
Text Solution
|
- If y=tan^(-1) (3x^(2)+2),"then "dy/dx=
Text Solution
|
- At x=0," if " (d)/(dx) (tan^(-1) (a+bx))=1," then "a^(6)-b^(3)+1=
Text Solution
|
- If y=cot^(-1) ((1)/(sqrtx)),"then "dy/dx=
Text Solution
|
- If y="cosec"^(-1) (2x+1),"then "dy/dx=
Text Solution
|
- If y=(tan^(-1) x)^(4/3),"then "dy/dx=
Text Solution
|
- If y=sin(2 cos^(-1)x),"then " dy/dx=
Text Solution
|
- If y="cosec"(3 tan^(-1) x),"then "dy/dx=
Text Solution
|
- (d)/(dx) (cos (sec^(-1) ((x)/(8)))=
Text Solution
|
- If y=sin^(-1) (cos 3x),"then "dy/dx=
Text Solution
|
- If y=cos^(-1) (cos x),"then " (dy)/(dx) is
Text Solution
|
- If y=cos^(-1) (sin x^(2)),"then " (dy)/(dx)=
Text Solution
|
- If y=sin^(-1) x+cos^(-1) x,"then "dy/dx=
Text Solution
|
- If y="cosec"^(-1)((x^(2)+1)/(x^(2)-1))+cos^(-1) ((x^(2)-1)/(x^(2)+1)),...
Text Solution
|
- If y=sec^(-1) ((sqrtx-1)/(x+sqrtx))+sin^(-1) ((x+sqrtx)/(sqrtx-1))," t...
Text Solution
|
- If y=tan^(-1) sqrt(x^(2)+y^(2))+cot^(-1) sqrt(x^(2)+y^(2)),"then " dy/...
Text Solution
|