Home
Class 12
MATHS
If y=sin^(-1) (cos 3x),"then "dy/dx=...

If `y=sin^(-1) (cos 3x),"then "dy/dx=`

A

` 3`

B

` -3`

C

` (3)/(sqrt( 1-x^(2)))`

D

` (-3)/(sqrt( 1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = \sin^{-1}(\cos(3x)) \) and we need to find \( \frac{dy}{dx} \), we can follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) We start by applying the chain rule of differentiation. The derivative of \( \sin^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{d}{du}(\sin^{-1}(u)) = \frac{1}{\sqrt{1 - u^2}} \] In our case, \( u = \cos(3x) \). ### Step 2: Apply the chain rule Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (\cos(3x))^2}} \cdot \frac{d}{dx}(\cos(3x)) \] ### Step 3: Differentiate \( \cos(3x) \) Now we need to differentiate \( \cos(3x) \): \[ \frac{d}{dx}(\cos(3x)) = -\sin(3x) \cdot \frac{d}{dx}(3x) = -\sin(3x) \cdot 3 = -3\sin(3x) \] ### Step 4: Substitute back into the derivative Now we substitute this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (\cos(3x))^2}} \cdot (-3\sin(3x)) \] ### Step 5: Simplify the expression Using the identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \), we know: \[ 1 - \cos^2(3x) = \sin^2(3x) \] Thus, we can rewrite the square root: \[ \sqrt{1 - \cos^2(3x)} = \sqrt{\sin^2(3x)} = |\sin(3x)| \] Assuming \( \sin(3x) \) is non-negative in the interval we are considering, we can simplify: \[ \frac{dy}{dx} = \frac{-3\sin(3x)}{|\sin(3x)|} \] This simplifies to: \[ \frac{dy}{dx} = -3 \quad \text{(if } \sin(3x) \text{ is positive)} \] ### Final Answer Thus, the final answer is: \[ \frac{dy}{dx} = -3 \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1) x+cos^(-1) x,"then "dy/dx=

If y=sin(2 cos^(-1)x),"then " dy/dx=

If y=sin^(-1) (2 cos^(2)x-1),"then " dy/dx=

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)

If y= sin (cos (tan x)) ,then (dy)/(dx) =

If y=cos^(-1) (sin x^(2)),"then " (dy)/(dx)=

If y=sin ^(-1) (4x^(3) -3x) ,then ( dy)/(dx) =

If y=tan^(-1) ((sin x)/(1-cos x)),"then " dy/dx=

If y=tan^(-1) ((1-sin x)/(cos x)),"then " dy/dx=

If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=