Home
Class 12
MATHS
If y=cos^(-1) (sin x^(2)),"then " (dy)/(...

If `y=cos^(-1) (sin x^(2)),"then " (dy)/(dx)=`

A

` -2`

B

2

C

`-2x`

D

2x

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos^{-1}(\sin(x^2)) \), we will use the chain rule and the differentiation formula for the inverse cosine function. ### Step-by-Step Solution: 1. **Identify the outer and inner functions**: - The outer function is \( y = \cos^{-1}(u) \) where \( u = \sin(x^2) \). - The inner function is \( u = \sin(x^2) \). 2. **Differentiate the outer function**: - The derivative of \( y = \cos^{-1}(u) \) is given by: \[ \frac{dy}{du} = -\frac{1}{\sqrt{1 - u^2}} \] - Substituting \( u = \sin(x^2) \): \[ \frac{dy}{du} = -\frac{1}{\sqrt{1 - \sin^2(x^2)}} \] - Using the identity \( 1 - \sin^2(x) = \cos^2(x) \): \[ \frac{dy}{du} = -\frac{1}{\sqrt{\cos^2(x^2)}} = -\frac{1}{\cos(x^2)} \] 3. **Differentiate the inner function**: - Now, we differentiate \( u = \sin(x^2) \): \[ \frac{du}{dx} = \cos(x^2) \cdot \frac{d}{dx}(x^2) = \cos(x^2) \cdot 2x \] 4. **Apply the chain rule**: - Now, we can apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] - Substituting the derivatives we found: \[ \frac{dy}{dx} = -\frac{1}{\cos(x^2)} \cdot (2x \cos(x^2)) \] 5. **Simplify the expression**: - The \( \cos(x^2) \) terms cancel out: \[ \frac{dy}{dx} = -2x \] ### Final Answer: \[ \frac{dy}{dx} = -2x \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=

If y=cos^(-1)(1-2sin^(2)x)," find "(dy)/(dx)

If y=sin^(-1) (2 cos^(2)x-1),"then " dy/dx=

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)

If y=cot^(-1)((sin x)/(1+cos x)) then (dy)/(dx)=

If y=cos (x^(3)) sin ^(2) (x^(5)),then (dy)/(dx) =

If y = cos ^(-1) [sin (4^(x))], " find " (dy)/(dx)

If y=tan^(-1) ((sin x)/(1-cos x)),"then " dy/dx=

If y=tan^(-1) ((1-sin x)/(cos x)),"then " dy/dx=

If y=tan^(-1)((1+cos x)/(sin x)),then(dy)/(dx)=