Home
Class 12
MATHS
If y="cosec"^(-1)((x^(2)+1)/(x^(2)-1))+c...

If `y="cosec"^(-1)((x^(2)+1)/(x^(2)-1))+cos^(-1) ((x^(2)-1)/(x^(2)+1)),"then " (dy)/(dx)=`

A

` 0`

B

` 1`

C

` (1)/(sqrt( 1-x^(2)))`

D

` (-1)/(sqrt( 1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function \( y = \csc^{-1} \left( \frac{x^2 + 1}{x^2 - 1} \right) + \cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right) \). ### Step 1: Rewrite the Inverse Functions Using the identity for inverse trigonometric functions, we can rewrite the equation: \[ y = \csc^{-1} \left( \frac{x^2 + 1}{x^2 - 1} \right) + \cos^{-1} \left( \frac{x^2 - 1}{x^2 + 1} \right) \] We know that: \[ \csc^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can express \( y \) as: \[ y = \frac{\pi}{2} \] ### Step 2: Differentiate the Function Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{\pi}{2} \right) \] Since \( \frac{\pi}{2} \) is a constant, its derivative is: \[ \frac{dy}{dx} = 0 \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y = cos^(-1) ((x^(2) -1)/(x^(2) +1)) " then " (dy)/(dx) = ?

If y=cos ^(-1) ((1-x^(2))/( 1+x^(2))) ,then (dy)/(dx)=

If y=sin^(-1)((1-x^(2))/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2))) find (dy)/(dx)

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

If y=(cos^(-1)x)/(1+x^(2)),"then " dy/dx=

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

y=x^(x cos x)+(x^(2)+1)/(x^(2)-1), find (dy)/(dx)

If y=cos ^(-1) sqrt((1+x) /( 2) )then (dy)/(dx)=

If y=cos((1)/(2)cos^(-1)x)," then "(dy)/(dx)=

If y=cos^(-1) sqrt((1+cos x)//(2)),"then " dy/dx=