Home
Class 12
MATHS
If y=10^(cot^(-1))+10^(tan^(-1)),"then "...

If `y=10^(cot^(-1))+10^(tan^(-1)),"then "(dy)/(dx)=`

A

` (log 100)/( 1+x^(2))(10^(cot -1) -10^(tan -1_x))`

B

` (log 100)/( 1+x^(2))(10^(tan -1_x) -10^(cot -1_x))`

C

` (log 10)/( 1+x^(2))(10^(cot -1) -10^(tan -1_x))`

D

` (log 10)/( 1+x^(2))(10^(tan -1_x) -10^(cot -1_x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = 10^{\cot^{-1}(x)} + 10^{\tan^{-1}(x)} \), we will use the chain rule and properties of logarithms. Let's go through the solution step by step. ### Step 1: Rewrite the Function We start with: \[ y = 10^{\cot^{-1}(x)} + 10^{\tan^{-1}(x)} \] ### Step 2: Differentiate Each Term We will differentiate each term separately. For a function of the form \( a^{f(x)} \), the derivative is given by: \[ \frac{d}{dx}(a^{f(x)}) = a^{f(x)} \ln(a) \cdot f'(x) \] In our case, \( a = 10 \) and \( f(x) = \cot^{-1}(x) \) for the first term and \( f(x) = \tan^{-1}(x) \) for the second term. ### Step 3: Differentiate the First Term For the first term \( 10^{\cot^{-1}(x)} \): \[ \frac{d}{dx}(10^{\cot^{-1}(x)}) = 10^{\cot^{-1}(x)} \ln(10) \cdot \frac{d}{dx}(\cot^{-1}(x)) \] The derivative of \( \cot^{-1}(x) \) is: \[ \frac{d}{dx}(\cot^{-1}(x)) = -\frac{1}{1+x^2} \] Thus, we have: \[ \frac{d}{dx}(10^{\cot^{-1}(x)}) = 10^{\cot^{-1}(x)} \ln(10) \cdot \left(-\frac{1}{1+x^2}\right) \] ### Step 4: Differentiate the Second Term For the second term \( 10^{\tan^{-1}(x)} \): \[ \frac{d}{dx}(10^{\tan^{-1}(x)}) = 10^{\tan^{-1}(x)} \ln(10) \cdot \frac{d}{dx}(\tan^{-1}(x)) \] The derivative of \( \tan^{-1}(x) \) is: \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2} \] Thus, we have: \[ \frac{d}{dx}(10^{\tan^{-1}(x)}) = 10^{\tan^{-1}(x)} \ln(10) \cdot \frac{1}{1+x^2} \] ### Step 5: Combine the Derivatives Now, we combine the derivatives of both terms: \[ \frac{dy}{dx} = 10^{\cot^{-1}(x)} \ln(10) \left(-\frac{1}{1+x^2}\right) + 10^{\tan^{-1}(x)} \ln(10) \cdot \frac{1}{1+x^2} \] ### Step 6: Factor Out Common Terms We can factor out \( \ln(10) \) and \( \frac{1}{1+x^2} \): \[ \frac{dy}{dx} = \ln(10) \cdot \frac{1}{1+x^2} \left( 10^{\tan^{-1}(x)} - 10^{\cot^{-1}(x)} \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\ln(10)}{1+x^2} \left( 10^{\tan^{-1}(x)} - 10^{\cot^{-1}(x)} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If cot^(-1)x+cot^(-1)y=cot^(-1)c," then "(dy)/(dx)=

If y=tan^(-1)x ,then (dy)/(dx) is

y=tan^(-1)sqrt(x)then-(dy)/(dx)=

If y = cot^(-1) ((1 -x)/(1 +x)) " then " (dy)/(dx) = ?

If y=cot^(-1)(1+x^(2)-x), then (dy)/(dx)=

if y=tan(sin^(-1)x) then (dy)/(dx)

if y=sec(tan^(-1)x)then(dy)/(dx) is

If : y=(1+x^(2))*tan^(-1)x-x," then: "(dy)/(dx)=

If y=cot^(-1) ((1)/(sqrtx)),"then "dy/dx=