Home
Class 12
MATHS
If y=sin^(-1) (2 cos^(2)x-1),"then " dy/...

If `y=sin^(-1) (2 cos^(2)x-1),"then " dy/dx=`

A

`1`

B

`-1`

C

`2`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin^{-1}(2 \cos^2 x - 1) \), we will follow these steps: ### Step 1: Rewrite the function using a trigonometric identity We know that: \[ 2 \cos^2 x - 1 = \cos(2x) \] Thus, we can rewrite \( y \) as: \[ y = \sin^{-1}(\cos(2x)) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we will use the formula for the derivative of the inverse sine function: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (\cos(2x))^2}} \cdot \frac{d}{dx}(\cos(2x)) \] ### Step 3: Differentiate \( \cos(2x) \) The derivative of \( \cos(2x) \) is: \[ \frac{d}{dx}(\cos(2x)) = -\sin(2x) \cdot 2 = -2\sin(2x) \] ### Step 4: Substitute back into the derivative formula Now substituting back, we have: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \cos^2(2x)}} \cdot (-2\sin(2x)) \] ### Step 5: Simplify the expression Using the identity \( 1 - \cos^2(\theta) = \sin^2(\theta) \), we can simplify: \[ \sqrt{1 - \cos^2(2x)} = \sin(2x) \] Thus, we have: \[ \frac{dy}{dx} = \frac{-2\sin(2x)}{\sin(2x)} = -2 \] ### Final Answer Therefore, the derivative is: \[ \frac{dy}{dx} = -2 \] ---
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=

If y=sin^(-1) x+cos^(-1) x,"then "dy/dx=

If y=sin ^(-1) (2x^(2) -1) ,then (dy)/(dx)=

If y=(sin^(-1)x)/(cos^(-1)x)," then "(dy)/(dx)=(k)/((cos^(-1)x)^(2)sqrt(1-x^(2)))," where "k=

If y=cos^(-1) (sin x^(2)),"then " (dy)/(dx)=

y=sin ^(-1) (1-2x ^(2)),then (dy)/(dx)=

If y=sin(2 cos^(-1)x),"then " dy/dx=

If y=cos((1)/(2)cos^(-1)x)," then "(dy)/(dx)=

If y=sin^(-1)(x/2)+cos^(-1)(x/2) then (dy)/(dx)=

If y=sin^(-1)(2^(x)),"then "dy/dx=

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to x+y...

    Text Solution

    |

  2. If y=(cos^(-1)x)/(1+x^(2)),"then " dy/dx=

    Text Solution

    |

  3. If y=sin^(-1) (2 cos^(2)x-1),"then " dy/dx=

    Text Solution

    |

  4. If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=

    Text Solution

    |

  5. If y=cos^(-1) sqrt((1+cos x)//(2)),"then " dy/dx=

    Text Solution

    |

  6. If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

    Text Solution

    |

  7. If y=tan^(-1) ((sin x)/(1-cos x)),"then " dy/dx=

    Text Solution

    |

  8. if y=tan^-1((sinx)/(1+cosx)) prove that (dy)/(dx) = 1 / 2

    Text Solution

    |

  9. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  10. If y=tan^(-1) ((1-sin x)/(cos x)),"then " dy/dx=

    Text Solution

    |

  11. If y=tan^(-1) ((cos x)/(1-sin x)),"then " dy/dx=

    Text Solution

    |

  12. If y=tan^(- 1)sqrt((1-cosx)/(1+cosx)), prove that (dy)/(dx)=1/2.

    Text Solution

    |

  13. If y=tan^(-1) sqrt((1+cos ((x)/(2)))/(1-cos ((x)/(2))),"then " dy/dx=

    Text Solution

    |

  14. If y=tan^(-1) ("cosec x"-cot x),"then " dy/dx=

    Text Solution

    |

  15. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  16. If y=cot^(-1) ("cosec x"+cot x),"then " dy/dx=

    Text Solution

    |

  17. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  18. If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

    Text Solution

    |

  19. Ify=tan^(- 1)(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)) f...

    Text Solution

    |

  20. If y=tan^(-1)((sinx+cosx)/(cosx-sinx)) , then (dy)/(dx) is equal to 1/...

    Text Solution

    |