Home
Class 12
MATHS
If y=tan^(-1) ((sin x)/(1-cos x)),"then ...

If `y=tan^(-1) ((sin x)/(1-cos x)),"then " dy/dx=`

A

`-1`

B

`1`

C

`(-1)/(2)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1} \left( \frac{\sin x}{1 - \cos x} \right) \), we will use the chain rule and the quotient rule. Let's go through the steps: ### Step 1: Differentiate \( y \) We start by applying the derivative of the inverse tangent function: \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{\sin x}{1 - \cos x} \right)^2} \cdot \frac{d}{dx} \left( \frac{\sin x}{1 - \cos x} \right) \] ### Step 2: Differentiate \( \frac{\sin x}{1 - \cos x} \) To differentiate \( \frac{\sin x}{1 - \cos x} \), we will use the quotient rule: \[ \frac{d}{dx} \left( \frac{f(x)}{g(x)} \right) = \frac{g(x) f'(x) - f(x) g'(x)}{(g(x))^2} \] where \( f(x) = \sin x \) and \( g(x) = 1 - \cos x \). Calculating the derivatives: - \( f'(x) = \cos x \) - \( g'(x) = \sin x \) Now applying the quotient rule: \[ \frac{d}{dx} \left( \frac{\sin x}{1 - \cos x} \right) = \frac{(1 - \cos x) \cos x - \sin x \cdot \sin x}{(1 - \cos x)^2} \] This simplifies to: \[ = \frac{(1 - \cos x) \cos x - \sin^2 x}{(1 - \cos x)^2} \] ### Step 3: Simplify the numerator Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ = \frac{\cos x - \cos^2 x - \sin^2 x}{(1 - \cos x)^2} = \frac{\cos x - 1}{(1 - \cos x)^2} \] ### Step 4: Substitute back into the derivative Now we substitute this result back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{\sin x}{1 - \cos x} \right)^2} \cdot \frac{\cos x - 1}{(1 - \cos x)^2} \] ### Step 5: Simplify \( 1 + \left( \frac{\sin x}{1 - \cos x} \right)^2 \) Calculating \( 1 + \left( \frac{\sin x}{1 - \cos x} \right)^2 \): \[ = 1 + \frac{\sin^2 x}{(1 - \cos x)^2} = \frac{(1 - \cos x)^2 + \sin^2 x}{(1 - \cos x)^2} \] Using \( \sin^2 x + \cos^2 x = 1 \): \[ = \frac{1 - 2\cos x + \cos^2 x + \sin^2 x}{(1 - \cos x)^2} = \frac{1 - 2\cos x + 1}{(1 - \cos x)^2} = \frac{2 - 2\cos x}{(1 - \cos x)^2} = \frac{2(1 - \cos x)}{(1 - \cos x)^2} = \frac{2}{1 - \cos x} \] ### Step 6: Final expression for \( \frac{dy}{dx} \) Substituting this back into our expression: \[ \frac{dy}{dx} = \frac{(1 - \cos x)(\cos x - 1)}{(1 - \cos x)^2 \cdot \frac{2}{1 - \cos x}} = \frac{(\cos x - 1)}{2(1 - \cos x)} = -\frac{1}{2} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • Differential Equation

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|277 Videos
  • INTEGRATION

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|582 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1) ((1-sin x)/(cos x)),"then " dy/dx=

If y=tan^(-1) ((cos x)/(1-sin x)),"then " dy/dx=

If y=cot^(-1)((sin x)/(1+cos x)) then (dy)/(dx)=

If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

if y=tan^(-1)((cos x)/(1+sin x)) then (dy)/(dx)

If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

if y=tan^(-1)((sin x)/(1+cos x)) prove that (dy)/(dx)=(1)/(2)

If y=tan^(-1)((1+cos x)/(sin x)),then(dy)/(dx)=

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)

NIKITA PUBLICATION-DIFFERENTIATION -MCQ
  1. If y=cos^(-1) sqrt((1+cos x)//(2)),"then " dy/dx=

    Text Solution

    |

  2. If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

    Text Solution

    |

  3. If y=tan^(-1) ((sin x)/(1-cos x)),"then " dy/dx=

    Text Solution

    |

  4. if y=tan^-1((sinx)/(1+cosx)) prove that (dy)/(dx) = 1 / 2

    Text Solution

    |

  5. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  6. If y=tan^(-1) ((1-sin x)/(cos x)),"then " dy/dx=

    Text Solution

    |

  7. If y=tan^(-1) ((cos x)/(1-sin x)),"then " dy/dx=

    Text Solution

    |

  8. If y=tan^(- 1)sqrt((1-cosx)/(1+cosx)), prove that (dy)/(dx)=1/2.

    Text Solution

    |

  9. If y=tan^(-1) sqrt((1+cos ((x)/(2)))/(1-cos ((x)/(2))),"then " dy/dx=

    Text Solution

    |

  10. If y=tan^(-1) ("cosec x"-cot x),"then " dy/dx=

    Text Solution

    |

  11. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  12. If y=cot^(-1) ("cosec x"+cot x),"then " dy/dx=

    Text Solution

    |

  13. If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    Text Solution

    |

  14. If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

    Text Solution

    |

  15. Ify=tan^(- 1)(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)) f...

    Text Solution

    |

  16. If y=tan^(-1)((sinx+cosx)/(cosx-sinx)) , then (dy)/(dx) is equal to 1/...

    Text Solution

    |

  17. If y= sin ^(-1) ((cos x +sin x)/( sqrt2)) ,then (dy)/(dx)=

    Text Solution

    |

  18. If y=sin ^(-1) ((asin x +bcos x )/( sqrt(a^(2) +b^(2)))) ,then (dy)/(...

    Text Solution

    |

  19. If y= sin ^(-1) ((4cos x +5sin x )/( sqrt(41))) ,then (dy)/(dx)=

    Text Solution

    |

  20. If y=cos ^(-1) ((cos x+ sin x )/(sqrt( 2))),then (dy)/(dx)=

    Text Solution

    |